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Abstract: Currently, about half of the transactions in the US stock market are based on high-frequency algorithmic trading, 

making it difficult for the investors with the long-term investment horizon, such as pension funds, to obtain stable returns. The 

development of a market forecast model that could achieve stable returns over the long term is an important issue in supporting 

not only pensions but also the central bank policy makers or new private businesses. To obtain stable investment performance by 

a forecast model over the long-term, it is necessary to remove noise from sample data in advance and extract a universal pattern. 

However, it is difficult to preliminarily distinguish between noise and true patterns and remove noise in advance. In this study, the 

sample space was divided into 8 sub-spaces using a Two Stage Optimization decision tree, and the versatility of each sub-space 

was evaluated by a pattern recognition model. Then, the sub-space with a low versatility was defined as the space with relatively 

large noise, and a forecast model was created by excluding the sub-spaces with large noise. It was found that the forecast model 

constructed in this way could obtain the prediction accuracy higher than that of the conventional method. Also, when the 

prediction accuracy of the model was evaluated by the walk-forward method using financial time-series data, investment 

performance that stably exceeded the return of benchmark assets was obtained over the past 15 years. 
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1. Introduction 

Currently, about half of the transactions in the US stock 

market are by high-frequency algorithmic trading. A small 

number of institutional investors with algorithmic trading 

equipment and know-how make big profits, and the 

opportunities for other investors to make profits are diminishing. 

As a result, it is difficult for pension funds to operate stably or 

for new private businesses to finance from the stock market as 

in the past. Especially during the corona shock in early 2020, 

algorithmic trading disrupted stock and oil prices, and even 

central bank monetary policy and government economic policy 

could not stabilize the market. Frequent market turmoil would 

further widen the gap between rich and poor and destabilize 

society. In order to address these issues, it is now necessary to 

develop a stock price forecasting model that can obtain stable 

investment performance over the long term despite frequent 

short-term market turmoil or regime changes. 

So far, various stock price forecasting models have been 

developed in academia and businesses. From the viewpoint of 

stock price prediction models using machine learning 

techniques, Bruno et al. [1] reviewed and classified 101 

related works covering specialized literature from 1991 to 

2017, and Obthong et al. [2] examined 52 previous research 

and explored the application of machine learning exclusively 

focusing on stock price prediction. Among machine learning 

techniques, Hu et al. [3] and Kumar et al. [4] focused on the 

neural network and have surveyed 93 and 20 forecasting 

models respectively specializing and compared them in 

characteristics and forecasting accuracy. In addition, research 

on stock market prediction based on sentiment using text 

mining techniques has been active in recent years [5, 6]. 

While many stock price forecasting models have been 

developed so far, few studies have verified the forecasting 

accuracy of the models over a long period of time (i.e. over 15 

years) including different financial regime and successfully 

achieved the stable forecasting accuracy. One of the reasons is 

that the model fits into a few stock price drivers for a certain 

period of time, and the forecast accuracy is high during the 

period when the drivers are effective, but the forecast accuracy 
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is significantly reduced when they waned in influence. In 

particular, if a model is created by a method with many 

parameters such as a deep neural network, it tends to overfit to 

a few stock price fluctuation factors for a specific time. In such 

a case, the prediction accuracy of the model is high at a 

specific time, but the prediction accuracy is low at other times. 

Also, sentiment analysis generally uses a relatively short 

period of data set; therefore, it is difficult to verify long-term 

prediction accuracy. 

It has also been reported that when real money is invested 

using a stock price forecasting model that shows high 

forecasting accuracy in the paper, the excellent results shown 

in the paper are often not obtained. [7]. Since the factors that 

cause stock price fluctuations change as the financial market 

regime changes, it has been shown that long-term forecasting 

is difficult even with a stock price forecasting model that 

shows high predictability over a certain period of time. 

As countermeasures against such issues, it is important (1) 

to ignore stock price drivers peculiar to a certain short period 

of time (hereinafter referred to as noise) and extract universal 

stock price fluctuation factors over a long period of time, and 

(2) to make forecasts using different models in response to 

different financial market regime. 

However, with regard to (1), whether the stock price 

fluctuation factor recognized by the model is noise or 

universal over a long period of time will be known later, and it 

is not known at the time of forecasting. Therefore, it is not 

possible to create a model by removing noise from the data. 

On the other hand, it is possible to create an algorithm that 

extracts a space containing noise by induction. In such a 

process, a subsample is extracted from the entire sample space 

according to a set of several conditions. If a highly versatile 

pattern is recognized in a subsample, it can be regarded as a 

space with relatively little noise; however, if pattern 

recognition is not versatile in another subsample, it can be 

regarded as a space containing many noise and extraordinary 

values. 

Also, it is possible to create an algorithm that searches for 

the optimum combination of conditions using the versatility of 

the prediction model in a subsample as the evaluation value. If 

the entire sample space can be divided into a space containing 

a lot of noise and a apace containing little noise, a universal 

pattern can be recognized over a long period of time by 

creating a model in a space containing little noise. This can 

solve (1). 

In this research, the above process is implemented using a 

decision tree. The decision tree divides the space by a set of 

conditions, and this process is like the financial market regime 

shift. In addition, since the space that does not contain noise is 

further subdivided in the decision tree, a unique model can be 

created in each subspace. This indicates that (2) can be solved 

as different forecast models can be created for each difference 

market regime. 

On the other hand, constructing a decision tree in a 

recursive and heuristic way will eventually make a prediction 

model to overfit to noise. Therefore, when searching for a split 

of a decision tree, it is essential to find a global solution from 

all combinations of split criteria. 

There are studies that use evolutionary computation to 

optimize the split of a decision tree [8, 9]. In addition, there are 

many papers that use evolutionary computation for optimizing 

other machine learning parameters [10, 11]. However, since 

the number of combinations of split in a decision tree 

generally becomes excessively large, its optimization is 

considered to be NP-hard. 

Therefore, in this research, it is proposed that propose Two 

Stage Optimization in order to optimize a decision tree that 

divides the space containing noise and the space other than 

that. Two Stage Optimization performs a search for the 

optimum threshold value under a specific set of attributes by 

an evolutionary computation and a search for a combination of 

the optimum attributes by another metaheuristic computation. 

In this research, a model tree that divides the space 

containing noise and the space other than that is constructed 

by Two Stage Optimization, and a stock price prediction 

model is created for each final node of a tree. By doing so, this 

study is aimed to develop a forecasting model that can stably 

maintain high forecasting accuracy even in different financial 

regime and stable investment performance for a long period. 

2. Related Research 

Research on stock price forecasting has been actively 

conducted in academia and business. In the olden days, many 

of them used traditional financial theory, but most of the 

studies published in recent years used machine learning 

instead of traditional financial theory. As this research aims to 

create a stock price forecast model using machine learning 

methods, the section presents related studies that predict 

financial instrument prices by machine learning. 

2.1. Financial Price Prediction Using Machine Learning 

There have been many studies that have created stock price 

forecasting models using relatively simple neural networks or 

deep learning [12-14]. Neural networks generally optimize 

parameters by the back propagation method, but there are also 

studies in which neural networks of stock price prediction 

models are optimized by evolutionary computation [11]. 

There are also many studies that build stock price forecast 

models using RNNs or LSTMs that add the concept of time 

series analysis to neural networks [15-18]. Several studies 

have shown that LSTMs provide high accuracy in forecasting 

crude oil and gold prices as well as stock prices, 

demonstrating a wide range of applications of LSTM to 

financial forecasting models [19, 20]. 

For machine learning other than neural networks, Basak et 

al. [21] developed a stock price prediction model using a 

decision tree, and Xiao [22] and Yang [23] developed a stock 

price prediction model using SVM, both of which have been 

recognized the improvement in prediction accuracy. 

A model for predicting the financial crisis, which is one of 

the biggest fluctuation factors of stock market has also been 

developed using machine learning and is proven useful for 

predicting stock prices [24, 25]. But the data used are 
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imbalanced and the application to the stock price prediction 

needs some adjustment. 

2.2. Financial Price Prediction Using Text and Sentiment 

In addition to a stock price prediction model using 

numerical data, many related works where a model that 

recognizes financial market sentiment from text data and 

predicts financial product prices are available [26-28]. 

Some studies have shown high predictability not only for 

stock prices but also for cryptocurrencies whose prices 

fluctuate significantly in a short period of time. However, as 

the availability of text data is relatively short, only short-term 

forecasts are made so far [29]. 

2.3. Building a Tree While Avoiding Overfitting 

This subsection introduces a pioneering research on the 

search for global solutions of decision trees used in this study. 

A decision tree constructed by the greedy method usually 

has a problem of falling into a locally optimal solution. To 

avoid this overfitting problem, methods have been developed 

for determining a solution with multiple decision trees by 

ensemble learning [30, 31] and for optimizing splits using 

evolutionary computation [32]. 

Although both methods have shown higher accuracy than 

that using the greedy method, interpretability is lost in 

ensemble learning. Therefore, the research which searches the 

most suitable decision tree using evolution computation has 

been often performed [33-38]. 

The method of constructing a decision tree using 

evolutionary computation can be divided into two main threads: 

the evolutionary induction of decision trees and the 

evolutionary design of decision-tree components. The former 

method is an approach that optimizes the overall structure of the 

tree as a whole whereby each individual in evolutionary 

computation is the decision tree itself. Similar approaches have 

been used in numerous previous studies [9, 39-41]. In the latter 

method, however, each individual is a component optimized 

and combined to search the optimal tree structure. In the case of 

complex data, the evaluation value of the tree often does not 

improve when a split that is effective for the data sample created 

from splits by specific upper nodes is applied to that created 

from splits by other upper nodes [42, 43]. 

The attempt which optimizes branch of a decision tree all at 

once is also performed by a genetic programming extensively 

from the old days [44-47]. However, when the room where 

optimized calculation is made efficient is limited. Also, a 

genetic programming tries to search a numerous decision tree 

of branch using complicated data; therefore, a convergence to 

global optimum solution becomes difficult in terms of 

computation time. 

2.4. Evolutionary Computation as a Method for Building 

Tree 

When optimizing the branching criterion of the whole tree 

collectively by evolutionary calculation, the evaluation value 

of the tree changes nonlinearly when the attribute of the 

branching criterion of the upper node is changed, so 

optimization methods that assume a continuous evaluation 

function or evolutionary calculations that generate individuals 

based on distributions cannot be used. 

In addition to the steepest gradient, Adam, and Newton 

methods, optimization methods that assume a continuous 

evaluation function include Bayesian optimization, which has 

been applied to optimize hyperparameters in machine learning 

[48, 49]. However, when dealing with complex data with a 

large amount of noise, a single point search like these methods 

may led to a local optimum solution. Therefore, the stochastic 

search method, which is a black-box optimization method 

using multipoint search [50] and real-valued evolutionary 

computation are considered to be suitable for the search of the 

threshold. 

The latter method includes real-valued GA [51], evolution 

strategy [52], differential evolution [53], and particle swarm 

optimization [54]. 

Real-valued GA, through minimal generation gap [55], 

unimodal distribution crossover (UNDX) [56], and real-coded 

ensemble crossover star (REXstar) [57], has made it possible 

to show high performance in evaluation functions with 

problems such as bad scalability, inter-variable dependence, 

and global multimodality. 

In addition, there are some papers on evolutionary 

computation as a means of optimizing other machine learning. 

Chakraborty & Kar [58] used the swarm intelligence for the 

optimization. However, as with multi-agent simulation, in the 

swarm intelligence, researchers must make a relatively large 

number of assumptions, where arbitrariness arises. Slowik & 

Kwasnicka [59] used the evolutionary algorithms for the 

optimization of a tree. However, it has not solved the problem 

that the evaluation function becomes intermittent when the 

attribute of the branch of the decision tree is changed. 

2.5. Human Activities Prediction by Bio-oriented Methods 

Although different from the prediction of financial data, there 

are many studies using text to predict human behavior from 

sentiment, and many studies show relatively high prediction 

accuracy. It is difficult to predict the financial market using social 

media because information is mostly already factored into the 

stock price when it is available on the social media. However, 

analysis techniques used in those studies can give important 

suggestions for stock price prediction of this study in a hybrid 

bio-inspired computing approach for buzz detection [60]. 

Anupam & Kar [61] and Batra et al [62] target Phishing 

websites and spam email respectively, and they are different 

from the purpose of excluding short-term noise in financial 

markets. However, it is also a method that gives important 

suggestions for achieving the purpose of this study. 

Kar & Aswani [63] proposed the scheme to differentiate 

information and misinformation using social media based on 

bio-inspired computing, where there are some similarities to 

the purpose of this study in terms of the classification of data 

into two spaces by bio-inspired computing. In this study, the 

main purpose is to classify the unsupervised explanatory 

variables into noise or not; therefore, the classification method 
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is not the similarity or distance of the data, but the versatility 

of the model. However, it is also a method that gives important 

suggestions for achieving the purpose of this study. 

2.6. Issues of Previous Research and Purpose of This 

Research 

As described above, there are many related works in terms 

of developing a prediction model using evolutionary 

computing; however, few methods can handle 

multidimensional complex data with large noise owing to their 

difficulty in adjusting the step size, population size, number of 

offspring, and other factors. Among evolutionary strategies, 

with which the need to adjust the step size, population size, 

and number of generator individuals is relatively small, it has 

been pointed out that the covariance matrix adaptation 

evolution strategy (CMA-ES) [64] and distance-weighted 

exponential natural evolution strategies (DX-NES) [65] 

significantly degrades the search performance when applied to 

noisy and complex data. 

However, it has been reported that when applied to the 

numerical data including a large number of one-off factors, the 

DX-NES lost its performance significantly [66]. On the other 

hand, CMA-ES shows relatively higher resistant to noise and 

can be considered desirable for the evaluation function that 

changes significantly by changing the parameter threshold of 

the split in a decision tree. Among the many variations of 

CMA-ES, Hansen [67] reported the best performance for data 

in noisy and uncertain environments, and the Richter [68] 

model is suitable for searching decision trees. 

From these previous studies, it is said that it is important to 

use a search method that presupposes continuous distribution 

when searching for tree split criteria collectively. This makes 

it possible to efficiently search for the global optimum 

solution even with an evaluation function having a 

complicated shape. Creating a highly versatile model tree 

using such a method is a new attempt. 

3. Data and Methods 

3.1. Data Collection 

Time series data of financial markets are used as actual data 

of complex systems. Financial data is obtained from the 

Nikkei QUICK news database and Yahoo! Finance. 

Financial market data is a typical example with which high 

prediction accuracy cannot be obtained even by machine learning 

because it contains many extraordinary factors and noise. This 

research used as an objective variable the intraday return for the 

iShares Core S&P 500 exchange traded fund (ETF) from the 

opening price at 09:30 to the closing price at 16:00. Explanatory 

variables include financial indexes that represent the economic 

fundamentals of the United States, such as the change in the 

closing price of the stock index, exchange rate, and interest rate 

(Table 1). All financial data is obtained from Nikkei QUICK 

news database (https://corporate.quick.co.jp/en/). 

The financial data used to predict the S&P 500 ETF in next 

business day (BD) include 3,759 business day (BD) intraday 

returns between January 03, 2007, and December 30, 2021 as 

an objective variable. 

Table 1. Financial data used to predict S&P 500 ETF. 

Variables Name Term 

Objective iShares Core S&P 500 ETF NextBD Open~Close 

Explanatory1 S&P500 Previous BD ~ Current BD 

Explanatory2 Dow Jones/S&P500 Previous BD ~ Current BD 

Explanatory3 USD Index Previous BD ~ Current BD 

Explanatory4 US Treasury 10Y Yield Previous BD ~ Current BD 

Explanatory5 US Treasury 5-30Y Yield Gap Previous BD ~ Current BD 

Explanatory6 S&P500 3BDs Ago ~ Currend BD 

Explanatory7 Dow Jones/S&P500 3BDs Ago ~ Currend BD 

Explanatory8 USD Index 3BDs Ago ~ Currend BD 

Explanatory9 US Treasury 10Y Yield 3BDs Ago ~ Currend BD 

Explanatory10 US Treasury 5-30Y Yield Gap 3BDs Ago ~ Currend BD 

Explanatory11 S&P500 7BDs Ago ~ Currend BD 

Explanatory12 Dow Jones/S&P500 7BDs Ago ~ Currend BD 

Explanatory13 USD Index 7BDs Ago ~ Currend BD 

Explanatory14 US Treasury 10Y Yield 7BDs Ago ~ Currend BD 

Explanatory15 US Treasury 5-30Y Yield Gap 7BDs Ago ~ Currend BD 

 

3.2. Data Analysis 

Tables 3 and 4 show the results of analyzing the data. Table 

2 shows the correlation matrix for the data whose objective 

variable has a plus sign (when stock price rises), and Table 3 

shows the correlation matrix for the data whose objective 

variable has a minus sign (when stock price falls). The 

diagonal values are the average in the upper row and the 

standard deviation in the lower row. There are some 

explanatory variables with a correlation coefficient relatively 

higher than others, such as the correlation between the change 

in one business day and the change in 3 business days, but no 

correlation coefficient exceeds 0.5; therefore, the explanatory 

variables can be considered close to independent of each other. 

Also, regardless of whether the sign of the objective variable 

is positive or negative, there is no explanatory variable that 

shows a high simple correlation with the objective variable. In 

addition, there are no explanatory variables whose distribution 
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shapes differ greatly depending on whether the sign of the objective variable is positive or negative. 

Table 2. Data Analysis (when stock price rises). 

 
Obj. 

Exp. 

1 

Exp. 

2 

Exp. 

3 

Exp. 

4 

Exp. 

5 

Exp. 

6 

Exp. 

7 

Exp. 

8 

Exp. 

9 

Exp. 

10 

Exp. 

11 

Exp. 

12 

Exp. 

13 

Exp. 

14 

Exp. 

15 

Obj. 
0.01 

-0.19 0.07 -0.05 -0.08 0.07 -0.23 0.08 -0.09 -0.11 0.05 -0.28 0.10 -0.12 -0.12 0.05 
0.01 

Exp. 

1 
 

0.05 
-0.17 0.06 0.30 -0.08 0.41 -0.06 0.02 0.08 -0.04 0.21 0.01 0.01 0.04 -0.03 

1.02 

Exp. 

2 
  

-0.00 
0.01 -0.06 0.01 -0.08 0.45 -0.00 0.01 -0.02 -0.00 0.14 0.01 0.02 0.02 

1.00 

Exp. 

3 
   

0.00 
0.02 -0.00 0.15 -0.02 0.40 0.18 -0.10 0.03 0.02 0.15 0.10 -0.04 

0.99 

Exp. 

4 
    

-0.02 
-0.21 0.10 -0.02 -0.02 0.42 -0.11 0.06 -0.00 0.01 0.14 -0.05 

1.01 

Exp. 

5 
     

-0.00 
-0.04 0.01 -0.01 -0.07 0.42 -0.06 -0.00 -0.03 0.01 0.11 

0.98 

Exp. 

6 
      

-0.02 
-0.17 0.12 0.24 -0.04 0.47 -0.05 0.03 0.09 -0.03 

0.99 

Exp. 

7 
       

-0.00 
-0.03 -0.01 -0.05 -0.04 0.46 -0.00 0.04 -0.03 

0.99 

Exp. 

8 
        

0.01 
0.15 -0.10 0.08 0.01 0.46 0.19 -0.12 

1.00 

Exp. 

9 
         

-0.01 
-0.20 0.10 0.00 0.05 0.45 -0.14 

1.00 

Exp. 

10 
          

0.00 
-0.06 -0.04 -0.05 -0.04 0.45 

1.00 

Exp. 

11 
           

-0.02 
-0.15 0.13 0.19 -0.08 

0.99 

Exp. 

12 
            

0.01 
-0.03 0.03 -0.07 

1.00 

Exp. 

13 
             

-0.00 
0.20 -0.15 

1.01 

Exp. 

14 
              

0.01 
-0.21 

1.03 

Exp. 

15 
              

 

-0.00 

1.01 

Table 3. Data Analysis (when stock price falls). 

 
Obj. 

Exp. 

1 

Exp. 

2 

Exp. 

3 

Exp. 

4 

Exp. 

5 

Exp. 

6 

Exp. 

7 

Exp. 

8 

Exp. 

9 

Exp. 

10 

Exp. 

11 

Exp. 

12 

Exp. 

13 

Exp. 

14 

Exp. 

15 

Obj. 
-0.01 

0.06 -0.03 0.01 0.00 -0.01 0.16 -0.03 0.03 0.07 -0.05 0.21 -0.03 0.04 0.08 -0.09 
0.01 

Exp. 

1  

0.05 
-0.19 0.03 0.25 -0.04 0.26 -0.06 -0.01 0.06 -0.00 0.02 -0.02 -0.03 0.01 -0.01 

0.97 

Exp. 

2   

0.01 
-0.00 -0.02 -0.02 -0.03 0.40 -0.02 0.04 -0.03 -0.01 0.13 -0.02 0.01 -0.02 

1.00 

Exp. 

3  
  

-0.00 
-0.01 -0.03 0.11 -0.04 0.41 0.19 -0.13 0.02 -0.01 0.15 0.09 -0.07 

1.01 

Exp. 

4  
   

0.02 
-0.20 0.02 0.03 -0.02 0.36 -0.10 -0.03 0.00 -0.03 0.09 -0.06 

0.98 

Exp. 

5  
    

0.00 
-0.01 -0.08 -0.01 -0.07 0.41 -0.03 -0.03 0.01 -0.02 0.11 

1.03 

Exp. 

6  
     

0.02 
-0.17 0.15 0.20 -0.08 0.48 -0.05 0.06 0.11 -0.07 

1.01 

Exp. 

7  
      

0.00 
-0.03 0.03 -0.04 -0.05 0.51 -0.04 0.03 -0.01 

1.02 

Exp. 

8 
        

-0.02 
0.13 -0.11 0.11 -0.04 0.52 0.21 -0.13 

1.00 

Exp. 

9 
         

0.01 
-0.24 0.05 0.01 0.02 0.46 -0.14 

0.99 

Exp. 

10 
          

-0.00 
-0.08 -0.04 -0.04 -0.09 0.46 

1.00 

Exp. 

11 
           

0.02 
-0.10 0.15 0.20 -0.12 

1.01 

Exp. 

12 
            

-0.01 
-0.04 0.04 -0.05 

1.00 
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Obj. 

Exp. 

1 

Exp. 

2 

Exp. 

3 

Exp. 

4 

Exp. 

5 

Exp. 

6 

Exp. 

7 

Exp. 

8 

Exp. 

9 

Exp. 

10 

Exp. 

11 

Exp. 

12 

Exp. 

13 

Exp. 

14 

Exp. 

15 

Exp. 

13 
             

0.00 
0.21 -0.15 

0.99 

Exp. 

14 
              

-0.01 
-0.23 

0.97 

Exp. 

15 
              

 

0.01 

0.99 

 

3.3. Method 

3.3.1. Two Stage Optimization 

In this paper, an improved version of the method used in [69, 

70] is used. 

Since the attributes used for the splits of a certain node change, 

the evaluation value of a decision tree usually changes 

intermittently, when its overall structure is optimized all at once. 

With this reason, the continuous functions cannot be used as a 

search method. Therefore, in this research, Two Stage 

Optimization that consist of the inner-level search that optimizes 

the threshold for each feature and the outer-level search that 

searches the best features and their positions in a tree is adopted. 

Figure 1 outlines the mechanism of a Two Stage Optimization. 

 

 
Figure 1. Outline of Two Stage Optimization used in this research. 

Node 
3

Node 
1

Node 
2

Node 
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Node 
5

Leaf
1

Leaf
2

Leaf
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7

Leaf

5

Leaf

6
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7
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8

Tree evaluation value: The evaluation value of the leaf 
node is weighted averaged by the number of data.

1． Tree structure： 7 non-terminal nodes, 8 leaves

2． Randomly give each non-terminal 
node an attribute that serves as a 
branching criteria.

3． Optimize the threshold for each 
attribute using CME-ES

Value of a Leaf: Simple average 
of R2 of test data by 5-fold 
cross-validation using lasso 
regression

Inner level optimization
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3.3.2. Inner-Level Optimization 

Inner level optimization is performed by the following 

mechanism, and the outline is shown in Figure 1 (upper 

figure). 

1) The structure of the tree is 4 depths, 7 non-terminal 

nodes, and 8 leaf nodes. 

2) Randomly give each non-terminal node an attribute that 

serves as a branching reference and fix it. 

3) Optimize the threshold of each attribute by CME-ES. 

(a) Set the number of generations of CME-ES to 500 times. 

(b) The evaluation value is the weighted average of the 

predicted versatility of each leaf node by the number 

of elements of each leaf node. 

(c) The predictive versatility of each leaf node is the simple 

average of the coefficients of determination of the 

validation data by the 5-fold cross-validation method 

using lasso regression (the average of the coefficients of 

determination obtained from the five test data). 

(d) The regularization parameter of the lasso regression 

is 0.1. 

(e) If the number of data classified as a non-terminal node 

is less than 15 times the number of attributes of training 

data, it becomes a leaf node without further branching. 

In the inner level optimization, the attributes that serve as 

branching criteria for the seven branches are randomly 

extracted from the attribute set prepared in advance, and then 

the threshold value of each attribute is searched. The depth is 

set to 4 in order to suppress the solution space of CMA-ES and 

the calculation time. The search range of the threshold value 

for each attribute is from 25% tile point to 75% tile point. 

In general CMA-ES applications, the degree of freedom is 

� + ����
� ; the time complexity is ����	 ; and the spatial 

complexity is ���
	 for the number of the dimension � of 

the evaluation function. By limiting the variance–covariance 

matrix ���
�	  used for individual generation to diagonal 

components, the degree of freedom becomes � , and the 

amount of time and spatial complexity is reduced to ���	: 

�����
�	 = �1 − ����	�����	 +
�

����
���������
�	��

� + ���� �1 − �
����

�∑ !"�����	�#":%
��
�	��

��
"&� , ( = 1, …,	         (1) 

where ���� ∈ ,0,1. is the learning rate of diagonal element 

updates; 
�

����
∈ ,0,1.  is the weighting coefficient of the 

evolution path ����
�	 ; #":%
��
�	

 is the / -th most rated of the 

#��
�	; and �#":%
��
�	�� is the /-th component of �#":%

��
�	��. 

3.3.3. Outer-Level Optimization 

In the outer level search, the attributes used for each branch and 

their positions are optimized. The structure of a decision tree 

changes significantly if the attributes of one of the splits in a tree 

used is changed. With this reason, the outer-level search needs to 

use the search method assuming non-continuous distribution. 

Therefore, Tabu Search, which is one of the metaheuristic methods 

that does not consider the shape of the evaluation function is used. 

In [69, 70], Naïve GA is used as a method in the outer level search, 

however, since Tabu Search uses the previous search results for an 

efficient optimization, the time to converge is considered to be 

shorter than that of Naïve GA, and the solution is close to the 

optimum solution with a small number of generations. 

Outer level optimization is performed by the following 

algorithm, and the outline is shown in Figure 1 (lower figure). 

1. Give each non-terminal node of an initial tree an attribute 

that serves as a branching reference and optimize the 

threshold of each attribute by CME-ES (by Inter level 

optimization). This initial tree is referred to as S0. 

2. Create the best state Sb and the current state S, and record 

S0 in both for the time being. 

3. Select multiple (M) neighborhoods of S and set the 

neighborhood with the best grade as S'. 

4. Judge the state transition (either of the following). 

(a) If S' is better than Sb, then Sb = S = S'. At this time, if 

the taboo list contains an operation that changes from 

S to S', that part is moved to the newest description in 

the taboo list. 

(b) If S' is worse than Sb, check if the S → S' operation is 

listed in the taboo list. If it is not described, enter the 

operation that makes S → S' in the taboo list and set S 

= S'. At this time, if the size of the taboo list exceeds 

the upper limit, the oldest description is deleted. 

3.3.4. Model Evaluation Method Without Removing the 

Space Containing Noise 

The weighted prediction accuracy by linear regression 

analysis at the final node is used as an evaluation value of a 

tree. As the prediction accuracy, the average 0� obtained by 

the five-fold cross-validation method is used. Also, the Lasso 

regression model is used as a linear regression model in this 

study with a regularization parameter of 0.1. 

The Oakbridge-CX supercomputer system at the 

Information Technology Center, University of Tokyo, is used 

to calculate the largescale parallelization calculation. 

3.3.5. Model Evaluation Method Including Removal of the 

Space Containing Noise 

The model evaluation method discussed in Section 3.3.4 

targets all final nodes for evaluation. Even if many final nodes 

show high evaluation values, the evaluation as a tree is not 

high when one final node shows extremely low evaluation 

values. However, because the evaluation value is low for only 

some of the final nodes, the subsets classified in that location 

could have relatively large numbers of one-off factors and 

extraordinary values. If the evaluation values of the other final 

nodes are high except for those of the subsets, this tree extracts 

the space including noise, and a true model reflecting the core 

structure of the population can be built in the area excluding 

the space containing noise. Therefore, in this research, the 

model for only the final nodes of the tree having high 

evaluation values is evaluated. The evaluation value of the 

decision tree is the weighted average of the 0� of the final 
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node that was weighted by the number of elements classified 

into the final node. 

3.3.6. Accuracy Comparison and Robustness Check 

To evaluate the prediction accuracy of each method using 

financial time series data, the following methods were used: 

multiple regression analysis, lasso regression analysis, partial 

minimum error, neural network, XGBoost, Two Stage 

Optimization including noise, and Two Stage Optimization 

excluding noise. For the prediction accuracy used for 

comparison, the average 0�  according to the five-fold 

cross-validation method was used. 

The results may show excellent accuracy only when a 

particular random number is generated. In order to avoid 

drawing conclusions from such accidental results, the seeds of 

random numbers is changed to see if there is any change in the 

results and verify the robustness of the model. 

4. Results 

4.1. Two Stage Optimization Prediction Accuracy Excluding 

Noise 

Two Stage Optimization (referred to as TSO in Table 4) 

excluding noise showed the better results in the prediction of 

financial data (Table 1) than that of general machine learning 

methods. 

Table 4. Accuracy comparison using financial time series data (Average R2 

for Training and Test Data). 

 Train Test 

Linear Regression 0.43 0.01 

Lasso Regression 0.44 0.02 

Partial Minimum Error 0.43 0.02 

Neural Network 0.64 0.03 

XGBoost 0.62 0.05 

TSO Including Noise 0.55 0.19 

TSO Excluding Noise 0.56 0.36 

In the Two Stage Optimization, many hyperparameters are 

generated randomly such as the solution of the initial group of 

CMA-ES at the inner level, including the features and 

thresholds; individuals for initial generation at the outer level, 

and cross-validation of data samples in the performance 

evaluation. When the calculation was repeated 10 times with 

different random number seeds, strongly similar results were 

obtained (Table 5). 

Table 5. Prediction accuracy using different random number seeds. 

 Train Test 

Seed1 0.56 0.36 

Seed2 0.59 0.36 

Seed3 0.56 0.33 

Seed4 0.60 0.34 

Seed5 0.55 0.34 

Seed6 0.58 0.35 

Seed7 0.58 0.35 

Seed8 0.60 0.35 

Seed9 0.58 0.35 

Seed10 0.55 0.36 

4.2. Inner-Level Evolutionary Computation 

Inner-level searches require numerous iterative calculations 

and long processing time for converging to a global optimal 

solution when using complex information such as financial 

time series data. To confirm that the CMA-ES used in this 

research is superior to general CMA-ES and natural 

evolutionary computation in terms of processing time, the 

processing time needed for evaluation value convergence 

using the same features and their positions as the best tree is 

calculated, as shown in the first row in Table 5. The average 

convergence time Tconv following Zhang [71] was used as the 

processing time. 

The processing time of CMA-ES used in this research was 

shorter than that of NES, which is a similar evolution strategy 

(Table 6). 

Table 6. Time in seconds needed for convergence in each evolutionary 

computation. 

NES 13.587 

CMA-ES 11.948 

CMA-ES (Hyperparameters optimized) 10.037 

4.3. Evaluation of the Model Assuming Actual Operation 

(S&P 500, Binary Tree) 

Few previous studies on financial market forecasts obtained 

the same results when the proposed methods were faithfully 

reproduced and put into actual operation. Therefore, to 

confirm the prediction accuracy of Two Stage Optimization 

excluding noise under the situation as if it actually operates, 

the operational performance using the walk-forward method is 

calculated as follows. 

By using daily time series data for 1,500 business days prior 

to December 29, 2006, the best tree was created by applying 

Two Stage Optimization excluding noise. By using the data for 

December 29, 2006, the best tree created above was able to 

predict the intraday return from the opening price at 09:30 to the 

closing price at 16:00 on January 03, 2007 (next business day). 

If the prediction by the tree has a positive value, the investment 

return of the tree equals the intraday return of the iShares Core 

S&P 500 ETF; a negative value represents the intraday return 

with the opposite sign. If the data of December 29, 2006 is 

classified as the final node, which was excluded from the tree 

owing to the low evaluation value, it is likely to contain noise; 

thus, no investment is made (the investment return is zero). 

This process was repeated from January 03, 2007, to 

December 30, 2021, from which 3,760 business day investment 

returns were added to the initial asset value. As a result, the 

asset value showed a 4.7-fold increase, which is a large return 

compared with the 3.4-fold increase in the S&P 500 over the 

same period. The prediction accuracy of the sign in the 

predicted value was 59.7%. Investments were not made on 916 

of the 3,760 business days owing to the likely inclusion of noise. 

In addition, the prediction accuracy of the sign in the predicted 

value was 42.2% if the forecast was made for business days for 

which the forecast was not actually made based on the final 

node, which was excluded from the tree (Table 7 and Figure 2). 
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Figure 2. Transition of the asset value by Two Stage Optimization (S&P 500 

ETF, 2007/1/3 = 1). 

4.4. Evaluation of the Model Assuming Actual Operation 

(S&P 500, Ternary Tree) 

A space containing noise in which a pattern is not easily 

recognized is not necessarily one side of the two subsamples 

generated from the division of the entire data sample. When 

dividing a space by a decision tree, it is desirable to search the 

space in more detail using a multiway classification. 

The same analysis discussed in section 4.3 was performed 

using ternary trees instead of binary trees. As a result, the asset 

value increased 6.2 times, and the sign accuracy of the 

predicted value was 64.6%. Of the 3,760 business days, no 

investments were made on 941 days owing to a strong 

possibility of noise. The sign accuracy of the predicted value 

was 43.3% (Table 7 and Figure 3). The performance in terms 

of both the asst value and the prediction accuracy was 

improved by using ternary trees. 

 

Figure 3. Transition of the asset value by Two Stage Optimization (S&P 500 

ETF, 2007/1/3 = 1). 

Table 7. Accuracy comparison using S&P 500 ETF. 

S&P500        

  
# of Cases Asset Value Accuracy Precision Recall F1 Score 

Binary Tree 

Noise Included 3,760 3.6 55.5% 60.0% 53.6% 56.6% 

Noise 916 n.m. 42.2% 45.3% 38.4% 41.5% 

Noise Excluded 2,844 4.7 59.7% 64.3% 58.5% 61.3% 

Ternary Tree 

Noise Included 3,760 5.3 59.3% 63.5% 58.6% 61.0% 

Noise 941 n.m. 43.3% 47.9% 43.4% 45.5% 

Noise Excluded 2,819 6.2 64.6% 68.6% 63.8% 66.1% 

 

4.5. Evaluation of the Model Assuming Actual Operation 

(TOPIX Futures and iShares MSCI Germany ETF) 

The iShares Core S&P 500 ETF is a representative indicator 

of the global financial markets but has been on a consistent 

upward trend since 2009. Therefore, the same analysis 

discussed in section 4.4 and 4.5 was performed using the 

TOPIX Futures nearby month (Table 8) and iShares MSCI 

Germany ETF (Table 9). Although they have a smaller trading 

volume than the iShares Core S&P 500 ETF, they have no 

long-term trends and are a better example of complex system 

data. 

Table 8. Financial data used to predict TOPIX Futures. 

Variables Name Change 

Objective TOPX Futures Nearby Month NextBD Open~Close 

Explanatory1 TOPIX Previous BD ~ Current BD 

Explanatory2 Nikkei 225/TOPIX Previous BD ~ Current BD 

Explanatory3 JPY/USD Previous BD ~ Current BD 

Explanatory4 JGB 10Y Yield Previous BD ~ Current BD 

Explanatory5 JGB 5-30Y Yield Gap Previous BD ~ Current BD 

Explanatory6 TOPIX 3BDs Ago ~ Currend BD 

Explanatory7 Nikkei 225/TOPIX 3BDs Ago ~ Currend BD 

Explanatory8 JPY/USD 3BDs Ago ~ Currend BD 

Explanatory9 JGB 10Y Yield 3BDs Ago ~ Currend BD 

Explanatory10 JGB 5-30Y Yield Gap 3BDs Ago ~ Currend BD 

Explanatory11 TOPIX 7BDs Ago ~ Currend BD 

Explanatory12 Nikkei 225/TOPIX 7BDs Ago ~ Currend BD 

Explanatory13 JPY/USD 7BDs Ago ~ Currend BD 

Explanatory14 JGB 10Y Yield 7BDs Ago ~ Currend BD 

Explanatory15 JGB 5-30Y Yield Gap 7BDs Ago ~ Currend BD 
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Table 9. Financial data used to predict iShares MSCI Germany ETF. 

Variables Name Term 

Objective iShares MSCI Germany ETF NextBD Open~Close 

Explanatory1 MSCI Germany Index Previous BD ~ Current BD 

Explanatory2 DAX/MSCI Germany Index Previous BD ~ Current BD 

Explanatory3 EUR/USD Previous BD ~ Current BD 

Explanatory4 US Treasury 10Y Yield Previous BD ~ Current BD 

Explanatory5 US Treasury 5-30Y Yield Gap Previous BD ~ Current BD 

Explanatory6 MSCI Germany Index 3BDs Ago ~ Currend BD 

Explanatory7 DAX/MSCI Germany Index 3BDs Ago ~ Currend BD 

Explanatory8 EUR/USD 3BDs Ago ~ Currend BD 

Explanatory9 US Treasury 10Y Yield 3BDs Ago ~ Currend BD 

Explanatory10 US Treasury 5-30Y Yield Gap 3BDs Ago ~ Currend BD 

Explanatory11 MSCI Germany Index 7BDs Ago ~ Currend BD 

Explanatory12 DAX/MSCI Germany Index 7BDs Ago ~ Currend BD 

Explanatory13 EUR/USD 7BDs Ago ~ Currend BD 

Explanatory14 US Treasury 10Y Yield 7BDs Ago ~ Currend BD 

Explanatory15 US Treasury 5-30Y Yield Gap 7BDs Ago ~ Currend BD 

 

The financial data used to predict the TOPIX Futures in 

next BD include 3,670 business day (BD) intraday returns 

between January 04, 2007, and December 30, 2021 as an 

objective variable. Also, the financial data used to predict the 

iShares MSCI Germany ETF in next BD include 3,776 

business day (BD) intraday returns between January 03, 2007, 

and December 30, 2021 as an objective variable. 

By using daily time series data for 1,500 business days 

ending on December 28, 2006, the best tree was created by 

applying Two Stage Optimization excluding noise. By using 

the data on December 29, 2006, which represented 1,501 

business days later, the best tree created above was able to 

predict the intraday return from the opening price to the 

closing price on the next business day (the beginning of 

January 2007). If the prediction by the tree has a positive value, 

the investment return of the tree equals the intraday return of 

the underlying index; a negative value represents the intraday 

return with the opposite sign. If the data is classified as the 

final node, which was excluded from the tree owing to the low 

evaluation value, it is likely to contain noise; thus, no 

investment is made (the investment return is zero). 

This process was repeated by using both binary trees and 

ternary trees from the beginning of January to December 30, 

2021. The results are shown on Table 10 and Table 11. 

Although the performance with both TOPIX Futures and 

iShares MSCI Germany ETF in terms of both the asst value 

and the prediction accuracy are not as good as that with S&P 

500 ETF, the asset value grew much more than that of the 

underlying indices over the same period. Also, the 

performance in terms of both the asst value and the prediction 

accuracy was improved by using ternary trees. 

 
Figure 4. Transition of the asset value by Two Stage Optimization (TOPIX 

Futures, 2007/1/4 = 1, Binary Tree). 

Table 10. Accuracy comparison using TOPIX Futures. 

TOPIX 
       

  
# of Cases Asset Value Accuracy Precision Recall F1 Score 

Binary Tree 

Noise Included 3,670 2.6 53.2% 51.7% 54.2% 52.9% 

Noise 881 n.m. 41.2% 40.8% 42.9% 41.8% 

Noise Excluded 2,789 4.0 57.0% 55.2% 57.8% 56.5% 

Ternary Tree 

Noise Included 3,670 5.0 58.2% 56.5% 59.9% 58.2% 

Noise 995 n.m. 44.9% 44.2% 46.7% 45.4% 

Noise Excluded 2,675 5.8 63.1% 61.2% 64.9% 63.0% 

Table 11. Accuracy comparison using iShares MSCI Germany ETF. 

DAX 
       

  
# of Cases Asset Value Accuracy Precision Recall F1 Score 

Binary Tree 

Noise Included 3,776 3.1 53.0% 56.0% 52.2% 54.0% 

Noise 978 n.m. 43.9% 46.9% 43.2% 44.9% 

Noise Excluded 2,798 3.9 56.2% 59.2% 55.3% 57.2% 

Ternary Tree 

Noise Included 3,776 4.5 55.1% 58.2% 53.6% 55.8% 

Noise 945 n.m. 42.8% 45.6% 40.4% 42.9% 

Noise Excluded 2,831 5.3 59.2% 62.2% 58.0% 60.0% 
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Figure 5. Transition of the asset value by Two Stage Optimization (TOPIX 

Futures, 2001/1/4 = 1, Ternary Tree). 

 
Figure 6. Transition of the asset value by Two Stage Optimization (iShares 

MSCI Germany ETF, 2007/1/4 = 1, Binary Tree). 

 
Figure 7. Transition of the asset value by Two Stage Optimization (iShares 

MSCI Germany ETF, 2007/1/3 = 1, Ternary Tree). 

5. Discussion 

5.1. Contributions to Literature 

5.1.1. Evolutionary Computation as a Method for Building 

Tree 

Model trees have been widely used for data analysis 

because of their ease of interpretation. However, if the greedy 

method that searches the splitting criterion recursively from 

the upper node to the lower node is used, overfitting is likely 

to occur. On the other hand, attempts have been made to 

collectively optimize the structure of the model tree using 

evolutionary computation, but in many studies, while 

searching for the optimum tree structure, it is divided by a 

specific upper node. The splitting criteria that are valid for the 

area is applied to the area divided by other higher-level nodes. 

As an efficient method for collectively optimizing the 

overall structure of a tree, Two Stage Optimization, which 

performs the attributes of splitting criteria and their thresholds 

by separate evolutionary computation, has been proposed in 

recent previous research. This research proposed a new Two 

Stage Optimization that improved the problems in the 

previous research and surpassed the conventional methods in 

terms of performance from relatively simple problems to 

complicated problems. 

5.1.2. Stock Price Prediction Using Machine Learning 

There are many previous studies on stock price forecast by 

machine learning. On the other hand, as shown on 2.1 and 2.2, 

previous studies have also shown that it is difficult for a stock 

price forecast model to maintain stable prediction accuracy 

over a long period of time. One of the main reasons is that if 

machine learning recognizes a relatively short-term stock 

price driver, the model shows high prediction accuracy in a 

short period of time; however, if that driver wanes in influence, 

the prediction accuracy will decrease. In order to eliminate 

short-term stock price drivers as noise, it is necessary to 

determine in advance whether or not the data contains noise. 

Previous studies have actively classified supervised data by 

machine learning and have shown excellent results. However, 

studies on classification of unsupervised data, such as whether 

the data are noise or not, have not produced significant results. 

In this study, a model tree was used to divide the space 

containing noise and the space not containing noise, and a 

stock price forecast model was created in each space. The 

prediction accuracy in this study exceeded the existing 

methods, and more importantly, the long-term prediction 

performance of the model in this study was stable over about 

20 years horizon, which was not performed by any other 

previous works. 

5.2. Implication for Practice 

Many previous studies on stock price forecast show an 

excellent prediction accuracy; however, when real money is 

actually invested using a stock price forecasting model, the 

excellent results shown in the paper are often not obtained. 

One of the main reasons is a bit-ask spread. When the trading 

volume is small, such as individual stocks and crypto assets, 

the difference between the selling price and the buying price is 

large, and it may not be possible to trade at the desired price. 

Many of the previous studies do not consider this bit ask 

spread. 

In addition, some previous studies are predicting 

non-tradable price such as the S&P500, TOPIX or MSCI 

GERMANY INDEX. In contrast, this study predicts the prices 

of tradeable ETFs or futures of S&P500, TOPIX and MSCI 

GERMANY INDEX; therefore, there is no difference 

between theory and practice. In addition, since the opening 

and closing prices during the business day are determined in 
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an auction format, there are no bit ask spreads such as 

individual stocks and crypto assets. The big problem of this 

study in practical use is that if you deal with a large amount of 

money, you will not be able to trade at the opening and closing 

auctions, and the results may differ from the data used in the 

analysis. However, with S&P500, TOPIX and MSCI 

GERMANY INDEX, if the amount is about USD10millioln, it 

will be possible to trade at auction almost every day. 

Therefore, it is considered that the results obtained in this 

study can be obtained even if a model is actually used in 

practice. 

6. Conclusions 

To avoid overfitting in data analysis, it is desirable to 

remove in advance extraordinary values that deviate 

significantly from the true pattern of the population. However, 

because the true pattern is unknown, the extraordinary values 

to be excluded are also usually unknown. In this research, the 

sample space was divided using a decision tree, and the 

versatility was evaluated by using a pattern recognition model 

at each final node. The spaces were divided into those with 

high and low versatility. Those with a low versatility were 

defined having relatively large noise, and a model excluding 

such space was created to reflect the true pattern of the group. 

To efficiently search conditions for excluding the space 

containing noise, the Two Stage Optimization was used for 

efficiently optimizing the splits to divide the sample space 

rather than using a recursive method. 

It is confirmed that the globally optimal decision tree can be 

searched using the Two Stage Optimization, and the best 

decision tree obtained in this manner can be used to extract a 

space containing relatively large noise in a complicated 

problem. Moreover, the pattern recognition model constructed 

in the space reflecting the true pattern of the population 

showed higher prediction accuracy than that using the 

conventional method. In particular, when the prediction 

accuracy of the model was confirmed by the walk-forward 

method using financial time series data under the same 

conditions as those of actual operation, an investment 

performance that stably exceeded the return of the benchmark 

assets over the past 12 years was obtained. 

A space containing noise in which a pattern is not easily 

recognized is not necessarily one side of the two subsamples 

generated from the division of the entire data sample. 

Therefore, when dividing a space by a decision tree, it is 

desirable to subdivide the space by a polyadic tree. In this 

research, it was confirmed that the prediction accuracy 

improved when the binary tree was changed to a ternary tree. 

On the contrary, if the number of branches is further increased, 

the number of elements included in the final node decreases 

when the number of training data are limited, and the 

versatility of the pattern recognition model is lost. In this 

research, analysis using daily data is conducted. In the future, 

a similar study will be conducted on multiway trees using 

high-frequency data to obtain additional data. 

Highlight 

1) The accuracy of stock price prediction can be greatly 

improved if pattern recognition excluding spaces 

containing noise is used. 

2) A globally optimized model tree can effectively extract a 

space containing noise. 

3) A model tree can be globally optimized by Two Stage 

Optimization. 

4) CMA-ES is suitable for threshold optimization when 

attributes are given to each split in a model tree. 

5) A ternary tree is better than a binary tree for removing 

noise. 
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