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Abstract: The primary goal of this survey is to determine the most widely used data mining approaches and knowledge 

gaps from published publications. The novel coronavirus pneumonia, namely COVID-19, has become a global public health 

problem. Since the threat of pandemics has raised public health concerns, researchers to uncover hidden knowledge have 

used data extraction techniques. Web of Science, Scopus, and PubMed databases were used to conduct systematic research. 

Then, to choose good papers, all retrieved publications were reviewed in a stepwise procedure using the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses checklist. All of the data were examined and summarized using a few 

different classifications. Out of 300 citations, 50 papers were eligible through a systematic review. The review results 

showed that the most favorite DM belonged to Natural language processing (22%), and the most commonly proposed 

approach was revealing disease characteristics (22%). Regarding diseases, the most addressed disease was COVID-19. The 

studies predominately apply supervised learning techniques (90%). We found infectious disease (36%) to be the most 

frequent, closely followed by epidemiology discipline concerning healthcare scopes. The most common software used in 

the studies was SPSS (22%) and R (20%). Our results indicate that there is a significant relationship between air pollution 

and COVID-19 infection, which could partially explain the effect of national lockdown and provide implications for the 

control and prevention of this novel disease. The results revealed valuable research conducted by employing the capabilities 

of knowledge discovery methods to understand the unknown dimensions of diseases in pandemics. However, most research 

will need in terms of treatment and disease control. 
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1. Introduction 

The possibility of pandemics has been a cause of concern 

for the medical profession throughout history. The prospect 

of major infectious illnesses spreading worldwide before 

anybody notices it is a contentious issue. In the past, the 

apparent frequency of Severe Acute Respiratory Syndrome 

(SARS) and other forms of influenza showed how a 

pandemic disease might damage a country's health system [1, 

2]. Coronavirus illness (COVID-19) is the most recent 

pandemic disease series with worldwide ramifications. 

COVID-19, also known as the new Coronavirus (2019-

nCoV), is a coronavirus 2 (SARS-CoV-2)-related viral illness 

that emerged on December 8, 2019 in Wuhan, China [3, 4]. 

The globe confronts major hurdles in controlling this 

epidemic since a novel coronavirus (nCoV) is a new strain of 

the coronavirus family that has never been detected 

previously. During epidemics, clinical professionals have 

attempted to develop treatments and vaccines, but scientists 

working in the fields of data science and technology have 
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attempted to identify the infectious agent and assist in its 

management using information-based approaches [5, 6]. 

Over the past decades, valuable studies have been 

published regarding pandemics and data mining (DM) 

techniques [7]. These studies were carried out to understand 

better, control, and manage pandemics through various data 

mining methods. Due to the importance of dealing with the 

COVID-19 pandemic, it is essential to survey the most 

popular and efficient data mining methods that could 

significantly impact selecting the most effective techniques 

in pandemic studies. It can help us uncover the unknown 

nature of the new pandemic and future pandemics. This study 

aims to collect, synthesize, and evaluate existing publications 

to make monitoring and analysis of published studies on 

pandemics and data mining approaches easier. The specific 

research questions of this review are: 

1. To determine how many studies have been published in 

recent years and months regarding previous pandemics 

and the COVID-19 outbreak. 

2. To represent an overview of published studies and their 

characteristics. 

3. To investigate published studies regarding data mining 

techniques. 

4. To identify the source of data. 

5. To determine the most popular DM techniques in 

frequency and clinical domains. 

6. To determine the source of data. 

COVID-19, a contagious disease caused by the SARS-

COV-2 virus, necessitates extraordinary, high-intensity, high-

potential responses in more than 200 countries worldwide. In 

the first four months of the epidemic, infected people ranged 

from 2 to 20 million, with at least 200,000 deaths. To combat 

the rapid spread of the COVID-19 illness among humans, all 

governments worldwide took drastic measures, including the 

quarantine of hundreds of millions of citizens [18]. Despite 

the difficulties in identifying positive and negative COVID-

19 persons based on the many COVID-19 symptoms, all of 

these attempts are limited. Therefore, tests to detect the 

SARS–CoV-2 virus are believed to be critical to recognize 

the positive cases of this infection to limit the [19]. 

Radiology and imaging are some of the most beneficial and 

critical modalities used for diagnosis COVID-19 stage and 

hazards on the patient's lungs, specifically by chest CT scan 

[8]. Early diagnosis of COVID-19 is vital to minimize 

human-to-human transmission and patient care. Recently, the 

separation and quarantine of healthy people from the infected 

or per-sons who suspect that they are carrying the virus is the 

most effective technique for preventing the spread of 

COVID-19 [9]. The use of machine-learning techniques has 

revealed new insights into COVID-19 diagnoses, such as 

whether a lung computed tomography (CT) scan should be 

used as a first-line screening test or as an alternative to the 

real-time inverse transcriptase-polymerase chain reaction 

(RT–PCR) and the differences between COVID-19 

pneumonia and other viral pneumonia using a CT scan of the 

lungs [10]. 

2. Methodology 

This investigation was done using the Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA) 

checklist [14]. Then, to classify the primary characteristics of 

studies, a synthesis of eligible publications was undertaken 

based on the main characteristics. From December 8, 2019 to 

October 16, 2020 a systematic search of the scientific 

database, Web of Science, Scopus, and Pub Med databases 

was conducted using the keywords "data mining", "prediction 

model", "data mining techniques", "data mining methods", 

"pandemics", "pandemic", "COVID-19", "SARS-CoV-2", 

and "corona-virus disease." The keywords in each database 

were used to create Boolean search techniques. 

The following criteria were used to determine whether or 

not an article should be included: 

1) Only papers related to the application of data extraction 

techniques or knowledge discovery methods were 

included in this study; 

2) Only articles connected to pandemic illnesses like 

COVID-19 were included. Because of the wide range of 

approaches utilized in this sector, these methods were 

chosen based on the findings of Patel and Patel [15]. If 

an article matched the following conditions, it was ruled 

out: 

i). The article's title, summary, or full text did not 

include pandemics or COVID-19 diseases. 

ii). Book chapters, letters to editors, short briefs, reports, 

commentaries, technical reports, reviews, or meta-

analyses were not considered. 

iii).Non-English publications. 

iv). The complete text was not accessible. 

Through the online interface of scientific websites, 300 

articles were obtained from scientific databases (Web of 

Science, Scopus, and PubMed). For screening articles, 

inclusion and exclusion criteria were established. All titles 

and abstracts of retrieved papers were reviewed in the first 

step to identify relevant research. Three reviewers (MT, SS, 

and SR) examined all the titles and abstracts for relevant 

publications. Another reviewer (MG) looked at a random 

selection of studies. The Joanna Briggs Institute (JBI) 

checklist, which provides comprehensive checklists for the 

appraisal and assessment of most types of the research [16, 

17], and was used to assess the quality of the individual 

publications. We used this checklist since our review 

includes a variety of research study-related decisions. Two 

reviewers made decisions on study eligibility and quality; 

any disagreements were resolved by discussion. The flow of 

screening articles based on the [17] PRISMA method 

illustrates in Figure 1. 

Finally, 50 studies remained as eligible articles. Some 

classifications were assumed to classify and analyze 

inclusive studies. All eligible papers that met our inclusion 

criteria included 47 journal papers and three conference 

papers. As it is apparent, the majority of studies were 

published in 2020. 
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Figure 1. The PRISMA diagram for the identification, screening and eligibility. 

Table 1 summarizes only 20 articles out of 50 included under predefined categories. All articles are summed in the word 

cloud in Figure 2 to see the frequency of terms that appeared more often in reviewed publications. 

Table 1. The characteristics of 20 reviewed articles. 

Author Main approaches Clinical scope 
The applied method of 

data mining 

Software 

(Environment) 
Data source 

Abd-Alrazaq A et al. 

[30] 
Infoveillance Social behavior Text mining Python Twitter 

Ahamad MM [19] Disease characteristics Infectious disease 

Decision Tree, Random 

Forest, gradient boosting 

Machine, SVM 

SPSS Github repository 

Ren X et al. Treatment Pharmacology 

Association rule mining 

method, and association 

knowledge network 

R 

Traditional Chinese 

medicine system 

pharmacology database 

Zhang Y et al. [31] Infoveillance Psychology 
Time series, NLP, and 

deep learning 
Python Weibo social network 

Sudirman ID 

Nugraha DY [59] 
Risk factors Infectious Naive Bayes method Rapid Miner 

Ministry of Public Health 

Thailand 

Huang C et al. [20] Disease characteristics Infectious disease Text mining Python Sina Weibo social network 

Han X et al. [32] Infoveillance Infectious disease 
Time series, Random 

forest, Spatial Distribution 
Python Sina Weibo social network 

Ibrahim et al. [61] Tracing transmission Epidemiology ANN not mentioned CDC 

Foieni F et al.[22] Disease characteristics Respiratory medicine Multivariate Regression SPSS WHO 

Zhao ZR et al. [46] 
Patient monitoring 

and follow- up 

Respiratory medicine 

Regression model 
SPSS 

COVID-19 PUI 

registry 

Respiratory medicine 

Regression model 

Fan Q et al. [60] Risk factors Cardiology Logistic regression SPSS Wuhan Tongji hospital 

Lei MT et al. [62] Tracing transmission Epidemiology CART, Linear regression SPSS 
Macao Meteorological and 

Geo- physical Bureau 

Dong YL et al. [42] 
Patient monitoring 

and follow-up 
up Infectious disease Logistic regression SPSS Wuhan union hospital 

Roland LT et al. [26] Disease characteristics Respiratory medicine Logistic regression SPSS 
San Francisco (USF) 

institutional 

Zhou YW et al.[51] Early diagnosis Infectious disease 
Logistic regression, 

Nomograms 
R 

47 locations in Sichuan 

province 

Li S et al. [54] Early diagnosis Psychology Text mining SPSS Weibo posts 

Ayyoubzadeh SM et 

al. [34] 
Infoveillance 

Epidemiology scope Linear 

regression and long short 

term memory (LSTM) 

models  
Python Google data 

Qiang X et al. [50] Active case prediction Infectious disease 
Random forest (RF) 

method 
R 

China national genomics 

data center 

Liu. Q et al. [27] Disease characteristics Infectious disease Logistic regression SPSS 
Union Hospital, Tongji 

medical 

KostkovaP et al. [41] Outbreak prediction Public health Text mining Not mentioned Twitter 

Kostoff RN [35] Infoveillance Informatics Text mining Not mentioned Medical literature 

Szomszo M et al. 

[36] 
Infoveillance Informatics 

Text mining, linked 

resource 
Not mentioned Twitter 

According to reviewed studies, we can classify all eligible articles in this review into eight categories based on their clinical 

discipline. The identified clinical and health disciplines with their distribution and their frequency are described in Figure 2. 
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Figure 2. The frequency of main health disciplines in reviewed articles. 

According to the chart, it is evident that the greatest 

demand was related to infectious disease with 18 papers 

(36%). Next, epidemiology is the second largest discipline of 

included studies with 13 studies (26%). This analysis can be 

very helpful in determining gaps in the health domains. 

Since the main objective of this study was to deter- mine to 

what extent data mining techniques employed to fight 

pandemics, the frequency of applied methods was investigated 

in this section according to a study conducted by Patel and 

Patel [15]. Table 2 showed an overview of the distribution of 

applied data mining methods in reviewed articles. The analysis 

showed that all of the applied methods classified into 14 main 

categories. It is apparent that the most favorite method was 

employed in reviewed articles belonged to Natural language 

processing (NLP) techniques (22%). While logistic regression 

analysis with 20% of studies was in the second rank to 

determine the association of the independent variables with a 

dichotomous dependent variable [67]. 

Table 2. Frequency of data mining techniques in reviewed studies. 

DM techniques Frequency Percentage Studies 

NLP techniques 11 22.00% [20–30] 

Logistic regression 10 20.00% [31–40] 

Time series 7 14.00% [20, 41–46] 

Random forest 7 14.00% [47-51, 45, 42] 

Regression models 7 12.00% [52-55, 40, 49, 39] 

Decision tree 6 12.00% [51, 48, 56–58, 39] 

ANN 5 10.00% [52, 59, 60, 21] 

Naive Bayes 3 6.00% [61–63] 

SVM 2 4.00% [49, 51] 

Association rule mining 2 4.00% [65, 58, 66] 

Clustering 2 4.00% [34, 30] 

Apriority algorithm 1 2.00% [64] 

Genetic algorithm 1 2.00% [55] 

Fuzzy algorithm 1 2.00% [41] 

 

3. Discussion 

The primary goal of this study was to compile a list of 

papers on the use of data based DM techniques in pandemics. 

As a result, 50 publications were chosen and examined 

among 300 investigations. For the research that was included, 

a variety of data sources were employed. Most research was 

carried out in China because most pandemics started in this 

nation. 

According to a qualitative study, researchers chose to 

employ supervised approaches like regression to create 

prediction models for a better knowledge of unknown 

pandemics. All of these strategies have been successfully 

applied in diverse fields of medicine [11]. In addition, 

classification methodologies were used more than expected 

in the studies. By selecting the best method to implement 

exact prediction models, researchers can discover some 

biomarkers in unknown diseases that can enable them to 

predict essential outcomes [12, 13]. Therefore, developing 

prediction models can help physicians and help health 

policymakers and societies. 

The data revealed that preventing infectious illness 

transmission is the most critical priority in pandemic disease 

[68]. In general, the nature of a new illness during a 

pandemic is unclear, and scientists are concerned about 

recognizing the hallmarks of a new disease. That is why the 

majority of research is focused on identifying disease 

features. During this epidemic, scientists should prioritize 

diagnosis above other duties [69]. The second primary 
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concern with pandemic infections is how they propagate. As 

a result, about 10% of studies have been devoted to 

forecasting the disease's occurrence. 

However, because of the various methodologies used, the 

sample size of datasets varies greatly. The findings revealed 

that most of the research employed a limited number of data 

sets and a variety of data sources. The use of massive 

datasets can increase the model's precision and robustness of 

results [70], which can help scientists better combat this 

emerging illness. As a result, researchers should employ 

massive datasets in their studies, even if they are conducted 

worldwide, to make better diagnostic and treatment 

recommendations. We ran upon certain limits in our research. 

As a result, some research may be overlooked when this 

article is published. 

4. Conclusion 

This review could help scientists to reach published 

researches regarding DM techniques and fierce pandemics 

easier. We present a review of the COVID-19 literature and 

identify current research hotspots and priorities. Our findings 

can assist the research community in identifying and 

prioritizing research needs, as well as identifying prominent 

COVID-19 researchers, institutions, nations, and publications. 

Our study provided a systematic review of an exhaustive 

overview of integrated AI-based DM and machine learning 

algorithms with the CoV family. The data mining approaches 

used in worldwide pandemics were investigated in this study. 

However, to avoid and anticipate the COVID-19 outbreak, 

most of these strategies were created in the current context. 

According to our survey, we found out that the foremost 

objective of DM applications is related to disease 

characteristics. We think that our study may be applied to 

additional eHealth-related publications to provide physicians, 

administrators, and policymakers with a comprehensive 

perspective of the literature and the ability to categorize 

distinct subjects of current research for further investigation. 
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