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Abstract: In recent years, technology has enabled Universities and Colleges to offer web-based courses, in which, teachers (or
experts) design, curate and upload all course material required to teach the course online so that students can learn at their own
pace, time and location. This research proposes a tutoring framework called Example Recommendation System (ERS) that is
based on example-based learning (EBL) instructional method. ERS focuses on students devoting their time and cognitive capacity
to studying worked-out examples so that they can enhance their learning and apply it to graded tasks assigned to them. ERS uses
regular expression analysis to extract basic learning units (LU) (e.g. scanf is a LU in C programming) from all task solutions and
worked-out examples and represents this knowledge in vector space. Then, these vectors are mined to generate a customized list
of worked-out examples for each assigned task. The prime contribution of ERS’s extraction module is its extendibility to new
domains without requiring highly trained experts. Besides extendibility, ERS extracts LUs with 81% correctness for the domain
of “Programming in C” and 95% for domain of “Programming in Miranda”. ERS’s data mining model used for customization
has 93% accuracy and 88% f_score. ERS’s educational impact is also evident from experiments that show that students score
an average of 89% in tasks for which they use ERS’s recommended worked-out examples, as opposed to an average of 73% for
those tasks that students attempt without ERS’s assistance.

Keywords: Customized Learning, ITS, Domain Model, Tasks and Examples, Knowledge Extraction, Regular Expressions,
K-nearest Neighbors

1. Introduction resource (such as a worked-out example on adding 2 fractions)
n number of times (s1’s experience), then sl is assumed to
have mastered the resource (s1’s knowledge). Examples of

There are several diverse learning environments to teach C()mm()nly used online learning environments are Learning

a course in today’s technological world such as traditional Management Systems (e.g. Blackboard [2])) and Intelligent
in-class, distance learning, web-based online systems and  Tutoring Systems (ITS) (e.g. Wayang Outpost [3]).
blended environments that combine classroom teaching and For an ITS to achieve the core functionalities of adaptation
web-based technology.  According to Moore’s definition  and intelligence, it requires to capture student data that defines
[1], distance learning is a form of instruction in which the  both their learning behavior (e.g. time spent on a worked-out
instructor and learner need not be at the same place at any time example) and their knowledge on the subject taught by the ITS
for the instructions to be delivered. Online learning is a newer  (e.g. marks in a test or task). It also requires to store and
version of distance learning which uses technology (such as  manage its domain resources efficiently. Section 1.1 explains
the web) and shows some transformation of an individual’s brleﬂy the domain and student components required by any
experience into the individual’s knowledge using different ITS.

levels of interactivity. For example, if student s1 has browsed a
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1.1. Domain and Student Model

A domain model defines the expertise required to teach
the domain. In traditional classroom teaching, such expertise
comes from a combination of teacher and text book put
together. To gain such expertise, an ITS’s domain model
requires to store all basic concepts that define that domain,
and the resources required to teach or learn these concepts.
These resources include among others, worked-out examples
and gradable tasks such as quizzes, tests and assignments.
A worked-out example (WE) in this paper is defined as
a complete or partial worked-out solution explaining or
demonstrating one or more domain concepts (similar to
examples in textbooks). It is worth noting that this definition
of a worked-out example is somewhat different than worked-
out examples defined by Atkinson et al. [4] (in which
each worked-out example presents a solution in a step-by-
step fashion). Figure 1 shows a sample worked-out example
find_Area, which is essentially the solution to the following
instruction: “Write a program that computes and prints the area
of a triangle, given its base and height”. A task is defined as
a question or problem on one or more concepts in the domain.
Typically, a task is graded so that student performance in the
course can be measured objectively using these grades. For
example, task T1 in the domain of Programming in C is defined
as “T1: Write a C program to find the area of a rectangle”.
Being the expert, an ITS domain model also stores complete
solution of every task. This paper uses the same structure
to define a task solution and a worked-out example (WE).
Concepts can be defined by domain experts at various levels
of detail or granularity. With reference to the domain of C
programming, a concept can be defined broadly as a lesson
in a textbook (such as a lesson on loops) or very finely as
an element in a specific type of a loop (such as header of a
for loop). Experts for this research define concepts at a fine
level of granularity and call them as Learning Units (LU). For
example, “scanf” is an LU in the domain of C programming
that allows users to enter values from the keyboard. Similarly,
“fraction” is an example of a LU in the domain of Math.
The development of domain model is a very tedious job, and
requires the time and effort of several domain experts. Sections
3 and 4 of this paper propose automated methods to design
and build domain models that are easily extendable to other
domains without requiring much effort required of experts.

A student model (SM) is an approximate, partial, mainly
qualitative representation of the student’s knowledge about
a specific domain [5]. The objectives of an ITS dictate
what comprises the student model and how it should be
represented. For example, an ITS which supports teaching
strategies that are adaptive to a student’s learning style will
require the SM to store his/her learning style. A SM can be
represented using various structures such as files, relational
databases (RDB), ontology or more function-specific network
structures such as Bayesian networks [5, 6]. Student data
can be categorized as static or dynamic. Examples of static
characteristics are name, gender, preferences (e.g. student
prefers to use examples before attempting a quiz) and learning

styles (e.g. student prefers a learning style of collaboration
or groups). An example of dynamic student characteristic is
performance (e.g. marks scored in tests). Student modeling
is a process of storing student data and making inferences
about student’s characteristics, their learning behavior and
abilities [7]. ITS, like many other application areas, adapt data
mining techniques to perform functions such as automatically
capturing student actions and making inferences on them [8,
9, 10, 11]. Decision trees, k-nearest neighbors and Bayesian
Networks (BN) are the most commonly used predictive mining
methods in ITS systems [10, 11]. Research on existing EBL-
based ITS [12, 13, 14] has gone a long way in simulating the
role of a teacher in many ways, but there are still concerns
about design of a formal framework that can extract features
from domain examples and tasks in terms of basic learning
units, represent them in an efficient and scalable manner and
present a personalized list of examples to students.
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the input variables

#include <stdio.h>
int main(){

float base, height; /
float area_of triangle; /

printf ("Enter the values for base and height:");
scanf ("$£f3f", &base, &height):

area_of_triangle = 0.5 * base * height;

printf("Area = $.2f\n", area_of triangle):;
}

Figure 1. Worked-out example find_Area as solution to the instruction ”Write a program
that computes and prints the area of a triangle, given its base and height”.

1.2. Outline of the Paper

This paper is organized as follows: Section 2 presents
related work and our motivation for this research. Section
3 presents architecture used for the proposed ERS (Example
Recommendation System), the main ERS algorithm, and
a simplified application of ERS. Section 4 evaluates the
educational impact of ERS as a tutor, whereas section 5
evaluates the individual ERS components. Section 6 presents
conclusions and future work.

2. Related Work

Example-based learning (EBL) [15, 16] is a well-known
teaching strategy in traditional educational systems. EBL
focuses primarily on students devoting their time and cognitive
capacity to studying worked-out examples so that they can
enhance their learning and apply it to similar problems or
tasks. Figure 1 shows a worked-out example of a C program
that finds the area of a triangle. Renkl [16] states that
irrelevant cognitive load presented to students must be reduced
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to improve the effectiveness of worked-out examples, so
that students can devote their time and memory capacity to
successfully completing assigned tasks. Cognitive overload
occurs when the volume of information supplied to a student
exceeds his/her processing capability [17] (e.g. extraneous
material) and therefore makes learning ineffective. Following
these principles, this paper designs a framework for an EBL-
based ITS that presents to students, a concise list of only
those worked-out examples that can help them succeed in the
assigned task.

An extensive and comprehensive survey of existing systems
that use worked-out examples to teach a domain has been
done in an earlier publication [18]. One of the pioneers in
example-based learning systems is ELM-PE [19] that used a
technology which helped students solve new problems in LISP
programming language by presenting them with successfully
solved problems such as examples. It also focused on adaptive
navigation by hiding and disabling the links to those pages
that were not ready to be learned. SEATS [20] was a
web-based system designed for well-structured domains to
evaluate if adaptive and structural example-based learning is
effective. It provided help to students by presenting side-
by-side examples and highlighting their common structural
components. This paper elaborates the methodologies used
in the framework used by NavEx [12] and PADS [13]
that are very similar in their objective of adaptively finding
and presenting most relevant examples to students, yet very
different in the methodologies used. NavEx and PADS and
other existing systems cited in this paper are only a part
of an ITS. Section 1 (introduction) states the four essential
components (domain, student and teaching models and an
interface) that ITS typically consist of. The proposed system
focuses on the domain model and student model components.
Every ITS requires the domain resources to be extracted and
represented conveniently so that customization methods can be
applied to them. We refer to such extraction as KE (Knowledge
Extraction) and KC (Knowledge Customization). KE can
be done either automatically or manually. NavEx [12] uses
parsers and syntax tree representation to automatically extract
concepts from C programs. It transforms each worked-out
example (WE), given as a C program, into its equivalent
syntax tree, and then parses this tree to extract the WE’s
main concepts. Other existing systems ([14, 21, 22]) also use
such syntax tree representation to extract concepts from their
domain examples. Mokbel et al. [23] divide their solution’s
syntax trees into sub graphs using spectral clustering and then
measure the proximity between solution parts represented as
TFIDF weights. Representing each solution as a syntax tree
for matching examples requires a complex expert knowledge
of parsers and compiler construction, and makes the existing
systems less adaptable to other problem domains.

PADS [13] uses a manual method of extraction called IOC
[24], in which nine experts gave their opinion of whether or
not a concept should belong to an exercise (even though PADS
was experimented with exercises, the methodology applies
to worked-out examples as well). Then, an index value is
calculated for each concept i in exercise k as

(N=1)) Xije + N> Xije — > _Xiji
j=1 Jj=1 j=1

T = 2N —1)n M

where N = |concepts|,n = |experts| and X;;,= the rating
(1, 0, -1) of concept i on exercise k by expert j. An index value
I;;; >0.8 indicates that concept i is required by exercise k, a
value between 0.5 and 0.8 indicates that i is a sub-concept of k
and value of <0.5 indicates that i is not a concept of j.

In order to customize resources to student needs, NavEx
[12] stores student knowledge on a concept as a continuous
value[25]. In PADS [13], progress of a student on a concept
is stored as 1 (low), 2 (medium) and 3 (high). Customization
(KC) in NavEx is done by simply matching each student’s SM
contents with that of the example’s pre-requisite concepts — if
student has mastered all concepts of an example, it is marked
as ‘Ready”. A threshold value to compute the number of clicks
that a student had to make to master the example concepts
was defined as 0.8*(#all_concepts - #mastered_concepts) /
(#all_concepts) * #clicks_possible, where #clicks_possible for
each example was given by an expert. PADS [13] uses decision
trees to predict the difficulty level of an exercise for a student
S based on seven feature attributes and one target attribute.
The feature attributes are extracted from different sources such
as expert opinion (e.g. expert opinion on difficulty level of
the algorithm), student model (e.g. student’s performance on
main concepts of an exercise) and web logs (e.g. login times
during a week). At the end of an exercise, each student is
asked if he/she completed the exercise with any help — if S
did it without any help or could not do it, then target attribute
is set to O (=> inappropriate); if S did it with the help of
course materials or peer collaboration, then target attribute is
set to 1 (=> appropriate). The methods used by the existing
systems [12, 13, 23] are very subjective, dependent on a highly
expensive resource such as experts with complex knowledge
on areas such as parser generation and are less-focused as
they generate a broad range of examples independent of any
task . For example, PADS uses expert opinion for three of its
seven feature attributes. Both NavEx and PADS compare their
SM with N examples (N = #examples in the database). KC
in NavEx [12] uses number of clicks to determine whether a
student has sufficiently explored the example but students can
easily game this system by just clicking randomly to move on
to the next example. PADS [13] uses just the student’s opinion
to find if the example is at an appropriate level or not. The
existing systems also lack in adapting to situations where a
student may have explored the example but has not mastered
its concepts yet. Adding some objectivity to the examples (e.g.
compute scores for each ungraded example) can be a solution
to this problem. These limitations motivated us to develop
an architecture that improves learning in students using ITS
by presenting them with a more focused and concise list of
examples in real-time.

This paper proposes automated efficient extraction methods
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for extracting domain model components such as worked-
out examples such that they can be easily extended to
other domains. These methods also allow for a convenient
representation of domain knowledge so that mining methods
can be applied to customize the ITS resources to student needs.

3. Proposed System: Example
Recommendation System (ERS)

A literature review of existing methodologies [12, 13, 23]
used in the area of adapting examples to a student’s mastery
of domain concepts indicates that these methodologies can
be broken down into 3 phases : Knowledge Extraction (KE),
Knowledge Organization (KO) and Knowledge Customization
(KC). This paper focuses on the Knowledge Extraction and
Knowledge Customization components.

Worked-out
examples

Tasks and
solutions

Learning
Units

Domain Model

'l

Preprocessing

Knowledge Extraction
module
\
v
Vector Space Model

E1:(1011]
E2:[110 0]
T1:[1001]

Data Mining ."
v
Knowldge Customization
Module

!

Customized list
of worked-out
examples

Figure 2. Architecture of the proposed System.

3.1. Contributions

This paper addresses the limitations highlighted in section

2 (related works) by proposing a novel architecture for a

knowledge-empowered task-based example recommendation
system (ERS) for learning in an ITS as follows:

1. Knowledge extraction (KE) module of ERS uses regular

expressions to extract LUs of examples and tasks.

Regular expressions require expert knowledge that is
easily defined and maintained, can be easily extended to
a higher scope within the current domain and can also be
adapted to other subject domains. In addition, they allow
for more uniform conversion of examples and tasks to
similar LUs so that the most relevant examples can be
mined.

2. Knowledge Customization (KC) module of ERS
generates a customized list of examples for the task that
is being answered. Such a list reduces the cognitive
overload on students and allows them to focus on
the most relevant examples that will assist them in
accomplishing the task. ERS uses k-nearest neighbor
(k-nn) classification algorithm to generate such a list for
task ¢; and assign a difficulty level to ¢;. Algorithm k-nn
searches for the examples that are closest to a given task
based on the learning units (LU) covered by examples
and those required for the task.

Figure 2 shows the basic architecture of the proposed
framework that clearly integrates its basic components such as
extraction and customization. Knowledge extraction module
takes the set of learning Units (LU) in the domain given by
experts and resources such as worked-out examples and task
solutions as input. It then extracts LUs from them using
regular expressions and represents each resource as a vector
of n binary values, where n is the total number of LUs in the
domain (e.g. if n = 4, a worked-out example in that domain
could be represented as [1,0,1,1]). These vectors are given as
input to the KC (knowledge Customization) module that uses
data mining techniques to extract the k most relevant examples
related to a given task.

Sections 3.2 and 3.3 present the core algorithms and
methods used in knowledge extraction from ITS resources,
their representation and customization of resources to student
needs. Section 3.4 demonstrates an example that clearly
integrates ERS modules to accomplish its objective of
improving learning.

3.2. Knowledge Extraction in ERS

The goal of knowledge extraction (KE) module of ERS is
to automatically transform each task solution and worked-out
example in its domain to a binary vector of size n, where n =
number of learning units (LU) in ERS. The main motivation
to design and implement new KE algorithms for EBL-based
ITS such as ERS is the lack of its extendibility in the existing
systems to other domains. This section defines the domain
model of ERS and explains the novel algorithms proposed for
KE that are simple, efficient and easily extendable to other
domains.

3.2.1. Domain Model

Domain model of ERS is built by a pool of experts who
are Computer Science instructors and students (graduate and
undergraduate majors) and consists of the following items:
(1) Worked-out examples (e.g Figure 1) (2) Tasks (e.g. Task
T1: “There are 2.54 centimeters to 1 inch. Write a C
program that asks a user to enter the value of his/her height
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in inches and then displays the height in centimeters”) (3)
Task solutions: domain experts provide solutions to every
task that is in ERS’s database. Task solutions share the
same structure as a worked-out example. Figure 3 shows a
solution for task T1. (4) Learning units (LUs) : are defined
by experts within the scope of ERS. ERS experts are chosen
from a pool of undergraduate students with Computer Science
major. Experts are required to list all LUs in the ascending
order of difficulty such that LUI represents the simplest LU
while LUS0 has a higher level of difficulty and LU100 has
even higher level of difficulty than LUS50. They are also
required to partition the complete list of LUs into 2 disjoint
sets of simple (S) and complex (C) LUs based on material
difficulty. For example, experts on C define the list of LUs
in order of difficulty as Datatype < Variable <scanf <BE <for
loop <function definition (only six LUs are shown here) and
partition them as S = {Datatype, Variable, scanf, BE} C = { for
loop, function definition}. They typically use the hierarchy of
concepts given in a textbook on “Programming in C” to decide
the order of difficulty [26]. (5) Algorithms for extracting LUs
from task solutions and worked-out examples: ERS’s domain
experts provide regular expressions for each LU in its scope
and algorithms to extract one or more of these LUs from
given task solutions and worked-out examples. Section 3.2.2
defines regular expressions and the process of using regular
expressions for KE module of ERS.

3.2.2. Knowledge Extraction Using Regular Expressions
ERS domain experts define concepts at a fine level of
granularity and call them as learning units (LU) (section
1.1). This research uses regular expression analysis in order
to represent each worked-out example (WE) or task as a

collection of various LUs that are to core to that WE or task.
A regular expression (RE) is defined as a set of characters
that describe a pattern [27]. A RE is made up of constants
and symbols that have a special meaning and are known as
metacharacters (e.g. symbols such as \, ?, *, + and —).
For example, '+’ symbol matches the preceding character
one or more times (e.g. Joh+n matches strings such as John
and Johhhhn but not Jon), whereas symbol **’ matches the
preceding character zero or more times (e.g. Joh*n matches
Jon in addition to John and Johhhhn). ERS experts define a
unique RE for each LU included in its domain. For example,
RE used by ERS for learning unit LU7 is defined as: <LU7,
printf \( \*“ (\%[dcf])+ \” \, [a-zA-Z_][a-zA-Z0-9_]* (\, ([a-
zA-Z ][a-zA-Z0-9_]*) )+ \) ;>. The next subsection presents
an algorithm called KERE that automates this process of
extracting LUs from any given C program (be it a worked-out
example or the solution of a task) using regular expressions.

s

#include <stdio.h>

int main(){
float height_in, height_cms;
printf ("Enter your HT in inches"):;
scanf ("$f", g&height_in):;
height_cms = height_in * 2.54;

printf ("HT in cms = $f\n", height_cms) ;
}

Figure 3. Sample Task Solution of task T1: "Write a program that asks a user to enter
the value of his/her height in inches and then displays the height in centimeters”.

Algorithm 1 Knowledge extraction using regular expressions (KERE)

Inputs: learning Units (LU) in the domai, set of regular expressions {RE} - one for each concept in LU, string T E,;,, 0f task /

example solution

Output: LU_TE: list of {LUs that T'E,,, covers, number of times a LU occurs in T E;y, }

Method:
***pegin of KERE
1. LU_TE=[]

2. Clean T'E;,;,, by removing comments, header files (including main’s header)

3. for each concept C,in LU
3.1. letre = RE[C))]

3.2. C,,.count =number of times a string in 7' F,;,, matches re

3.3.if C,.count >= 1, then
3.3.1.append (C,,, Cy,.count) to LU_TE
***end of KERE

3.2.3. Proposed Algorithm for Knowledge Extraction
(KERE)

This section defines KERE (Knowledge Extraction using
Regular Expressions), an algorithm that identifies the presence
of one or more LUs in all those task solutions and worked-out
examples that are written as partial or complete C programs

from a domain. KERE (algorithm 1) takes as input a task
solution or a worked-out example represented as a string
(T'Eso1r) and outputs its LUs. It first cleans T Esq, by
removing the comments and header files in it. Then it does a
string pattern matching of the clean T'F;,,;,, against the regular
expressions of each LU to find the presence of a LU in T'F 4,
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and returns the number of times that LU appears in it. Figure
4 shows a worked-out example and the LUs extracted from it
by KERE {LU1, LU2, LU3, LU5, LU8}.

Worked-out example evaluate_expr Learning Units in evaluate_expr

#include <stdio.h> LU1: Datatype

int main(){ LU2: Variables
LU3: Assignment
inta=2,b; LUS: Arithmetic Expression - Simple
b=a/2*a%2; LU8: printf — mixed (messages and variables)

printf(“b = %d \n”, b);
}

Figure 4. Worked-out example evaluate_expr and its LUs extracted by KERE.

3.3. Knowledge Customization in ERS

The prime goal of knowledge customization (KC) module
in ERS is to build a list a worked-out examples that are most
appropriate to the tasks assigned to students. The motivation
behind customizing domain knowledge towards student needs
is to avoid cognitive overload for students so that they can
focus on the material suggested to them and succeed in
assigned tasks with a much higher likelihood.

3.3.1. Computing the Similarity Between Worked-Out
Examples and Task Solutions

The core algorithm of this module is driven by distance /
similarity functions such as Euclidean distance [28]. Similarity
function used in ERS computes the similarity between
assigned tasks and worked-out examples or between different
worked-out examples. The choice of a similarity function
depends on the type of data attributes used such as continuous,
categorical and binary. Continuous data attributes are those
that can be measured (e.g. weight of a person). Categorical
data attributes define different categories of data but cannot
be measured (e.g. gender, that has two categories “F” and
”M”). Binary data attributes are a special case of categorical
data, that can have only one of the two values 1 or 0. Binary
data can be further categorized as symmetric and asymmetric
data. A symmetric binary attribute is one in which the
presence of a 1 is regarded as equally significant as its absence
(0). For example, if gender is a binary attribute, where 1
represents female and O represents male, then a 1-1 match in
two different classrooms (indicating a female-female match) is
as significant as a 0-0 match (indicating a male-male match).
Therefore gender is a symmetric attribute. An asymmetric
binary attribute is one in which the presence of one of the
values (e.g. 1) is regarded as more significant than the other.
For example, if ”LU” is a binary attribute, where a value of
1 indicates the presence of an LU and O its absence, then a
1-1 match of a LU in two worked-out examples is significant,
whereas a 0-0 match has no significance (since 0 implies that
the LU is not present) and must be ignored. Therefore, LU is
an asymmetric binary attribute. The most common similarity
functions used with binary data are Jaccard’s coefficient (JC)
[29] and Hamming distance [30]. JC works best with binary
asymmetric attributes [28] and therefore are more applicable to
ERS’s domain data. Jaccard’s coefficient between two binary

vectors x and y is measured as

JO(,y) = — I ®)

Ji1 + for+ for

where f1; is the frequency of occurrence of 1 and 1 in
the corresponding bits of x and y, fo1 is the frequency of
occurrence of 0 and 1 in the corresponding bits of x and y
and fi19 is the frequency of occurrence of 1 and O in the
corresponding bits of x and y. Here, fp; and fio represent
the non-matching attribute pairs. For example, if x = [1, O,
0, 11and y =[1, 0, 1, 0], then JC(z,y) = 1/3. Hamming
distance HD is also used with binary data and is defined as the
number of bits that are different in two binary vectors x and y
measured as

HD(z,y) = for + fio 3)

 fu+ fors for + foo
For example, HD(x,y) = 1/2.

3.3.2. MGREPD (Modified Method to Generate Relevant
Examples and Predict Difficulty of a Task)

MGREPD is designed to overcome the limitations of
GREPD that was proposed in an earlier work by authors
on customization [31]. GREPD (Generate Relevant
Examples and Predict Difficulty of a task) takes as input
the (transformed) vector representation of all worked-out
examples and tasks solutions in ERS’s domain, and then uses
k-nearest neighbor predictive mining algorithm [28] to output
the list of worked-out examples closest to the given task and
also predict the difficulty level of the task. Each worked-
out example e; and task solution transformed by KERE is
represented as a vector of n values, LUy to LU,, (where n
= total number of LUs in ERS). For example, if n = 10 (the
first 10 LUs in table 2 and worked-out example e, is given as
{int a; float b; scanf(“%d; &a); scanf(“%f”, &b);}, then e; ’s
vector representation is [1, 1, 0, 0, 0, 0, 0, 0, 0, 2]. GREPD
then transforms these into vectors of TFIDF weights [31],
which takes both local (TF calculates weights locally, taking
into account a specific LU and worked-out example) and
global information on worked-out examples (IDF computes
the weights globally). GREPD had 2 limitations: (1) The
dataset generated by KR module of ERS is mostly binary
and asymmetric and cosine similarity used in GREPD is not
suitable for such data (2) The actual class labels for each
worked-out example used in the k-nn algorithm of GREPD
were manually given by experts. MGREPD is designed to
overcome these limitations. MGREPD uses k-nn classification
algorithm to find the neighboring worked-out examples of
each task. It takes as input m binary vectors (each of size
n) representing m worked-out examples in ERS (LU_EX) , a
vector LU_T of size n that stores the LUs of a domain task
solution, an integer value k (for the number of neighbors) and
a matrix DL that stores the actual difficulty level (DL) of each
worked-out example (DL is used as the class label attribute).
MGREPD uses a simple algorithm to assign a difficulty level
DL to each worked-out example as 'E’ for easy and D’ for
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difficult. DL of any example is based on the total number of
LUs it contains (numLU) and the LU of the highest difficulty
(highestld) (as provided in the domain model). If the highestld
LU belongs to the complex set, DL of that example is set to
’D’ or difficult. If the highestld LU is simple, and numLU
is less than nine, then DL of that example is set to 'E’ or
easy; otherwise, it is set to D’ or difficult. The set of LUs
are divided into complex and simple by experts and storesd as
such in the domain model.
Algorithm MGREPD

MGREPD (algorithm 2) computes the similarity between
a task solution and each worked-out example using Jaccard’s
coefficient (equation 2), sorts these JC values and generates a
list  of k examples closest to the task using k_nearest neighbor
predictive mining algorithm (k-nn) [28]. It then uses a voting
mechanism on [ to predict the task’s difficulty level. If the total
number of easy (E) examples in [ is greater than the number of
difficult (D) ones, then this task is predicted as easy; otherwise
it is predicted as difficult.

Algorithm 2 MGREPD : Modified algorithm to Generate Relevant Examples and Predict Difficulty of a task

Input:

1. LU_EX: size m * n, each row m is a binary vector representing a worked-out example of ERS, n = total number of LUs
2. LU_T : binary vector of size n LUs (present (1) or not (0)) for task T

3. k : integer specifying the number of neighbors used in k-nn

4. DL : vector of size m of actual class labels for each example in ERS; each class label is of type char (E for easy / D for

difficult) computed using algorithm 7 (findDL)
Other Variables:

JC7r: One-dimensional array of size n, to store the Jaccard’s coefficient JC between LU_T and each example in LU_E X

Output:

1. Listyeievant: List of k examples most relevant to task T
2. Predicted difficulty level of task T as E or D

Method:

*** pegin of MGREPD - uses k-nn to find the k most relevant examples of a task using the JC between the task and examples
1. Compute Jaccard’s coefficient JCp between LU_T and each row of LU_EX
2. Sort the JC'p values computed in step 1 in descending order and store the top k of them in List,cjepant

3. for each worked-out example e; in List,cievant

Find the difficulty level of e; as "E” or ”D” and assign it as DL(e;)

Let countE = number of examples in List,¢jevant With DL =E
Let countD = number of examples in List,¢jevant With DL =D

4. if countE >countD, then

Predicted difficulty level of task T = ‘E’;
else

Predicted difficulty level of task T = ‘D’;
***end of MGREPD

Algorithm 3 ERS_main

Input: Worked-out Examples E, Task Solutions T, Learning Units (LU) and their regular expressions RE, Task T'q

Output:

1. All worked-out examples in E and task solutions in T transformed into binary vectors of size n, where n is the total number of

LUs in ERS’s domain

2. List of most relevant examples for T'q
3. Predicted difficulty level of T'q
Method:

***pegin of ERS_main

1. Call algorithm KERE of knowledge extraction (KE) module to create the learning unit binary matrix LU_TE (also referred to
as 0) from regular expressions and examples and task solutions.

2. Call algorithm MGREPD of Knowledge Customization (KC) module to select the most relevant list of examples for task T'q.
***end of ERS_main

3.4. ERS: Algorithm and an Example Application and organization. It also includes an example that runs through

each of these modules.

This section presents the main ERS algorithm and how it
integrates the modules of knowledge extraction, customization
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3.4.1. The ERS Algorithm

The ERS_main algorithm calls the core algorithms for
each of its components KE and KC as shown in Algorithm
3. Section 3.4.2 demonstrates an example application of
ERS_main.

3.4.2. An Example Application of the Proposed ERS
System
Example 1: Given the domain model, this example
demonstrates how ERS’s KE module extracts knowledge, and
mines the examples to generate a customized list for students
attempting task TIE in its KC module, given k = 2.
Domain model (subset of ERS’s domain D1I)
1. Learning Units: There are currently 17 LU in
its domain, each LU represented as a tuple <id,

description): {<L1, datatypes>, <L2, variable>, <L3,
assignment>, <L4, Simple Arithmetic Expression>,
<L5, Compound Arithmetic Expression>, <L6, printf-
constant messages only>, <L7, printf-format specifiers
only>, <LS8, printf-mixed>, <L9, scanf - single
input>, <L10, scanf - multiple inputs>, <LI11,
relational Expression>, <L12, logical expression>,
<L13, relational-logical >, <L.14, arithmetic-relational-
logical>, <L15, simple while>, <L16, simple for>,
<L17, if-else>}

. Worked-out examples: El, E2, E3, E4, E5 as shown in

table 1.

. Tasks and task solutions: T1E and its solution shown in

table 1. For simplicity, there is only one task in the scope
of this domain.

Table 1. Worked-out examples and Task solution used in example 1.

Example Id Problem definition Solution
El Write a statement to calculate temperature in Fahrenheit, given temperature in Celcius fahrenheit =9 /5 * celcius + 32;
E2 Write statements to multiply and print 2 integers ¢ = a*b; printf(“ c = %d \n”, ¢);
E3 Write a for loop that prints all alternate integers from 1 to n, where n = positive integer given  for(i=1;i <n; i=i+ 2) { printf(“%d\n”, i);}

as user input. So it prints 1, 3, 5, 7 and so on.
E4 Write an expression to test the following : age is between 18 and 21 (inclusive). (age > 18 && age < 21)
E5 Write an if statement to test the following : age is between 18 and 21 (inclusive). If condition if (age > 18 && age < 21) printf(“Eligible”);

is true, print *“ Eligible” , otherwise print “Not eligible” . else

printf(‘“Not eligible”);

Task T1E Write statements to find and print the last digit of an integer x. x = 123; last_digit = x % 10; printf(“%d” , last_digit);

Solution of example 1 : Steps 1 - 4 of algorithm ERS_main
(algorithm 3) are executed as follows:
1. Step 1: KE: knowledge extraction: The core algorithm
of this component is KERE (algorithm 1).
(a) Inputsto KERE: <set of LUs, let n=#LUs (n=17),
RE:s for each LU, worked-out examples>
(b) Method
i. KERE is applied to worked-out examples in
table 1 to obtain 5 binary vectors of size 17
(one for each worked-out example). KERE

iterates through each of the 17 LUs to find
a matching pattern in T Eg,,(El). If a
matching pattern is found for an LU [, then a
1 is assigned to the row corresponding to F'1
and column [ of LU_TE (LU_TE(E1,l)=
1), otherwise LU_TE(E1,1)= 0. We call the
resulting Boolean matrix as 0.

(c) Output of KERE: 5 * 17 Boolean matrix d shown

in table 2.

Table 2. Dataset O : 5 * 17 matrix to represent examples and their LUs (defined in table 1).

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17
El 0 0 1 0 1 0 0 0 0 0 0 0 Oe 0 0 0 Oe
E2 0 0 1 1 0 0 0 1 0 0 0 0 Oe 0 0 0 Oe
E3 0 0 1 1 0 0 0 1 0 0 0 1 Oe 0 0 1 Oe
E4 0 0 0 0 0 0 0 0 0 0 0 1 Oe 1 0 0 0Oe
ES 0 0 0 0 0 1 0 0 0 0 0 1 Oe 1 0 0 le

1. Step 2: Knowledge Customization : The core algorithm
here is MGREPD (algorithm 2).
(a) Inputs to KC: <dataset O (table 2), k = 3, DL
for examples in table 1 = {'E’, 'E’, 'D’, 'E’,
"E’}, Task TIE as a binary vector LU_TE =
[0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0]>
(b) Method:

i. MGREPD finds the similarity between
LU_TE and each row in 9 as [0.25, 0.5,
0.33, 0, 0.1667] using jaccard’s coefficient,
sorts them in descending order and stores top
k in List,eievant. Thus List,cjevant fOr task
T1E = [E2, E3, E1], implying that students
working on task T1E will find examples E2,
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E3 and E1 as the most useful examples to
succeed in task T1E.

ii. T1Eis assigned a difficulty level of ’E’ (easy),
since the difficulty level of 2 (out of 3)
examples in T1’s neighborhood is "E’,

(c) Outputs of KC: <List,eievantfor task TIE,
predicted difficulty level of TIE ="E’>

4. Evaluation of ERS

This section evaluates the core ERS algorithms KERE and
MGREPD. Section 3 highlights the datasets created and used
by ERS. Section 4.1 presents an experimental analysis of
the knowledge extraction component (described in section
3.2) and section 4.2 presents the results and analysis of the
knowledge customization module of ERS (described in section
3.3). Section 4.3 demonstrates the experiments done with
different student groups in an attempt to evaluate ERS as an
effective tutor. The domain model created for ERS has 250
worked-out example, 31 tasks and tasks solutions and 27 LUs.

4.1. Experiment 1 on Knowledge Extraction

KERE (Knowledge Extraction using Regular Expressions),
as described in section 3.2 identifies the presence of LUs in
a given task solution or worked-out example. Section 4.1.1
demonstrates how it is easily extendable to a domain that
teaches Miranda functional programming language and also
to a non-programming Math domain. Section 4.1.2 validates
the correctness of KERE by comparing the LUs generated by
KERE with LUs generated manually by using a method called
IOC. Section 4.4 briefly illustrates the tutoring effectiveness of
ERS.

4.1.1. Knowledge Extraction Extendable to Other
Domains

This section demonstrates the extendibility property of
KERE to other domains and advantages of implementing it for
any ITS. Every ITS that automatically extracts LUs from its
resources requires the experts definition of the domain model,
similar to KERE (e.g. LUs, solutions of all tasks and worked-
out examples, algorithms for extraction). What makes ERS’s
KERE algorithm standout from other ITS is its simplicity,
efficiency and extendibility to other domains with significantly
less efforts by domain experts. This paper asserts that it is not
required by an ITS to verify syntactic relationships between
the LUs of task solutions and worked-out examples in order
to extract the LUs (as is done by existing systems such as
[12, 14, 23]) - it just needs to identify the existence of a
LU in the task solution or worked-out example. KERE is
designed using this principle, which makes KERE more easily
extendable to any new domain. KERE’s extendibility is tested
using a programming language called Miranda [18], which is
from a programming paradigm different than C. Miranda is
a functional language, as opposed to C, which is procedural.
KERE is implemented for Miranda with its domain model D2

consisting of (1) 16 learning units (LU), (2) RE for each LU (3)
101 worked-out examples and (4) 12 tasks (and their solutions)
[18].

4.1.2. Validation of KERE in Extracting the Correct LUs

In order to validate the correctness of the LUs extracted
by KERE, its results are compared with a manual extraction
method called Item-Objective Congruency (IOC) used
commonly in the area of Content Validity [13, 24]. The IOC
method collects and analyses judgments from several experts
on the relevance of an item (e.g. a learning unit) for an
instructional resource (e.g.worked-out example). Typically,
experts give their judgment for each LU i in worked-out
example or task solution k as a rating of 1 (if they strongly
believe that k must consist of LU 1), -1 (if they strongly believe
that k must not consist of LU i) and 0 (if they are not sure). It
then compiles all the expert ratings to compute a validity index
value for each LU i in worked-out example k using equation 1.
Expert ratings are collected and compiled for each worked-out
example in the domain. The LUs extracted by KERE are then
validated against these expert ratings using simple matching
coefficient (SMC). SMC between two binary vectors of the
same size is given in equation 4.

SMC(z,y) = J11 + foo @)

Ji1 + foo + for+ for

where f1;is the frequency of occurrence of 1 and 1 in the
corresponding bits of x and y. Similarly, fy;is the frequency
of occurrence of 0 and 1, fiq is the frequency of occurrence
of 1 and 0 and fy is the frequency of occurrence of 0 and 0
matches in the corresponding bits of x and y. For example,
SMC([10011],[10101]) = 3/5 = 0.6. KERE extracts LUs
for domain of Miranda with a 95% accuracy, indicating that
experts agree very strongly with the LUs extracted by KERE.

4.2. Experiment 2 on Knowledge Customization

MGREPD algorithm builds a k-nearest neighbor prediction
model using different similarity functions that are observed
to be applicable to ERS datasets. MGREPD uses leave-
one-out cross validation (LOOCYV) to evaluate its model. In
each iteration of LOOCYV, one sample (e.g. ith worked-out
example) from the complete dataset (of size N) is considered
to be the test data (test) and the rest of the (N-1) samples
are taken as training data. MGREPD predicts the difficulty
level of test data using the class labels of training data. The
actual class labels (difficulty level) of all N examples are
computed using attributes numLU and highestld as explained
in section 3.3.2. At the end, each example’s actual class label
is compared against its predicted one to find the total number
of correct predictions. To evaluate MGREPD, leave-one-out
method of cross-validation (LOOCYV) [32] and measures such
as accuracy and f-score are used [33]. Accuracy A measures
the ability of the model to match the actual value of the
class label with its predicted one (e.g. “Easy” predicted as
“Easy” and “Difficult” predicted as “Difficult”). In essence,
it is the number of correct predictions divided by the total
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number of predictions. Accuracy is not meaningful when
dealing with class labels that are imbalanced or when one
of the class labels is uncommon. For example, assume
that 10 out of 100 examples are actually labeled as true or
“Easy” and 90 are labeled as false or “Difficult”. In a worse-
case scenario, even if the classifier predicts only 1 (out of
10) “Easy” examples as “Easy”, the accuracy computed as
91/100 = 91% is very high. Other measures that are used
to evaluate classifiers are precision (defined as number of
actual true values correctly predicted as true divided by the
total number of values predicted as true) and recall (defined
as number of actual true values correctly predicted as true

divided by total number of true values). Assuming that all
easy examples are true and difficult ones are false, in this
example, precision=1/10=10% and recall = 1 / 1=100%.
Most classifiers achieve a trade-off between precision and
recall, since it is very challenging to keep both the measures
high. F-score is a combined measure that assesses this trade-
off between precision and recall and is defined as shown in
equation 5.

! 2 2 x recall * precision
score — 1 1
recall + precision

&)

recall 4+ precision
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Figure 5. Comparison of Accuracy of MGREPD using Jaccard’s coefficient and other similarity measures such as Cosine similarity.
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32 Ritu Chaturvedi and Christie I. Ezeife: Customized Learning in Online Tutoring Systems by Mining Learning
Units from Tasks and Examples

Figures 5 and 6 show results published in our earlier
work for algorithm GREPD on finding a task’s k closest
neighbors using a dataset ¢ of 70 worked-out examples, 5
task solutions and 11 learning units from domain D1 on
programming in C [31]. In this work, accuracy and f_score
were compared using Euclidean distance and cosine similarity
with the proposed measure called modified cosine similarity
(MCS) and it was found that results of using cosine and
modified cosine similarity on dataset ¢ are not very different
for values of k greater than 3. This paper compares the results
of GREPD with the proposed algorithm MGREPD, that uses
Jaccard’s coefficient to measure the similarity between a task
and worked-out examples. As the graph in figure 5 shows,
MGREPD using Jaccard’s coefficient performs the best with
93% when the total number of neighbors is 3. This implies that

MGREPD’s model correctly predicts the class labels for 93%
of its test data records. We also compare results of MGREPD
with yet another distance function called hamming distance,
applicable to binary data, similar to Jaccard’s coefficient.
Hamming distance between 2 binary vectors is defined as the
total number of bits in which they differ (equation 3). A
comparative evaluation of performance of MGREPD using
JC and hamming distance as similarity functions is shown in
figures 7 and 8. These graphs indicate that MGREPD that uses
JC performs better than hamming distance for ERS domain
D1. This can be attributed to the fact that JC ignores the 0-0
matches and therefore works best with asymmetric binary data,
similar to that of ERS, whereas hamming distance gives equal
importance to both 1-1 and 0-0 matches by not counting any
of them.

Comparing accuracy of MGREPD for domain D1 using
115 1 . . . .
Jaccard's coefficient and Hamming Distance
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E 95 1
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Figure 7. Comparison of accuracy of Jaccard’s coefficient verses Hamming Distance for domain D1.
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Figure 8. Comparison of f_score of Jaccard’s coefficient verses Hamming Distance for domain DI.
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4.3. ERS as a Tutor

This section describes the methods adapted to evaluate ERS
as a tutor, in order to validate its prime goal of analyzing the
effectiveness of worked-out examples carefully selected and
recommended by ERS for a given task and their impact on
student learning. Assuming that learning directly corresponds
to high marks, the main goal therefore, is to evaluate if ERS
improves the likelihood of students scoring higher marks in the
assigned tasks (ERS’s students are considered successful in a
task if they score a mark of 75 or higher in it). To accomplish
this, ERS uses student data from Winter 2015 and Fall 2015
semesters of an Undergraduate course on C Programming
for beginners, offered as a service course by the School of
Computer Science at the University of Windsor. The total
number of students used in this study from Winter 2015 were
48 and those from Fall 2015 were 34. This course requires
students to complete 10 individual assignments (worth 5%
each) and a written final exam (worth 50%). Each assignment
consists of 2 or more tasks.

Two different scenarios are used to evaluate ERS using
student and assignment data. In scenario 1, the same set of
students (e.g. all students registered in Fall 2015) is offered
2 similar groups of assignments. Group I of assignments
uses ERS to offer worked-out examples for its tasks, whereas
group II of assignments does not use ERS. It was observed
through experiments that the class average for assignments
in group I (WithExamples) is 89%, whereas the average for
assignments in group II (NoExamples) is just a 73%. In
scenario 2, performance of two different groups of students
that use the same set of assignments is compared. For Group I
in this scenario (Winter 2015), students are not required to use
examples; whereas group II students (Fall 2015) are required
to use the examples recommended by ERS. Average for group
IT was found to be 89% as compared to 83% measured for
students in group L.

5. Conclusions, Limitations and Future
Work

The goal of this paper is to develop an example-empowered
task-centered learning framework for online courses, to
implement the well-adapted theory of example-based learning.
The novelty of our approach is three-fold: (1) Clear separation
of the framework into independent components such as
knowledge extraction, representation and customization. This
enables us to treat each component independently so that
any changes made to any one component does not impact
the working of other components. (2) Easiness of defining
the domain model without requiring highly trained experts,
thus enabling its extendability to newer domains. (3) Mining
worked-out examples to recommend the most relevant ones
specific for a given task in order to help students perform better
in assigned tasks.

The existing frameworks in this area so far ([12, 13])
have either used manual methods or highly complicated and

demanding automated methods for knowledge extraction (such
as syntax trees to represent examples and tasks). These
methods not only limit the systems extendability to other
LUs in the current domain, (since each new LU added
to the system will require experts to be well-versed with
syntax trees and parsers or with the entire domain LUs (for
manual methods)), but they also limit the extendability of
KE methods to other domains. ERS’s KE methods (sections
4.2 and 6.2) demonstrate how easy it is to define regular
expressions for learning units of any domain and how this
method of extraction contributes substantially to the ITS and
EDM community. There are obvious limitations of using this
method to extract LUs from certain subjects in Arts and Social
Sciences that have less rigorous structure and more semantic
ambiguity by both manual and automatic methods and remains
a focus of future work. The authers have also extended their
knowledge extraction techniques [34] using a novel keyword
based search tree (k-BST) method that recommends relevant
code fragments by extracting existing keywords, matching
with relevant coding examples by k-means clustering, and
recommending the relevant coding examples back to the
user. For reasons similar to the ones stated above, the
straight-forward approach of using regular expressions for
knowledge extraction might not be suitable to incorporate
concepts such as polymorphism in object-oriented languages.
Our structured knowledge base of examples and tasks allows
both simple querying and use of data mining techniques to
enrich the process of knowledge customization. One of the
challenges that students face in an online course is abundance
of information, which includes both relevant and irrelevant
information (relevant to the assigned task). The purpose of
KC module is to effectively search for only those examples
that cover LUs similar to the current task, thereby reducing the
cognitive overload in terms of number of relevant examples
presented. Both scenarios in section 4.3 indicate that students
have a higher likelihood of getting high marks in tasks if
they study the worked-out examples recommended by ERS.
A limitation of the proposed approach is that it generates the
same set of examples (for a given task) for all students, and
therefore does not adapt to students needs.

Future work also includes integrating association rule
mining and sequential pattern mining techniques into the
framework so that we can refine the process of knowledge
organization and customization to identify sets and sequences
of LUs that often occur together and can belong to the same
group, or recommended next to students, even if it is not
obvious from the examples in the database. Further, socially
adaptive mechanisms such as number of ‘likes’ given to
an example by students can be used to rate examples and
recommend them to future students. Another future direction
is to automate the knowledge extraction (KE) such that the
regular expression (RE) unit of a domain is defined and
integrated for any new domain.
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