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Abstract: There is a huge increase in the amount of generated data since the explosion of the Internet. This generated data 
which is usually collected in different formats and from multiple sources is popularly termed Big Data. Big data contains 
uncertainty. To handle uncertainty in big data, probabilistic reasoning is used to develop probabilistic models that specify generic 
knowledge in different topics. These models are used in conjunction with an inference algorithm to enable decision makers 
especially during uncertain situations. Extensive knowledge in fields such as statistics, machine learning and probability theories 
are employed in the development of these probabilistic models. Thus, it is usually a difficult undertaking. Probabilistic 
programming was introduced to simplify and enable development of complex models. Again, decision makers often need to use 
knowledge from historic data as well as current data to make cogent decisions. Thus, the necessity to unify processing of historic 
and real-time data with low latency. The Lambda architecture was introduced for this purpose. This paper presents a framework 
called Kognitor that simplifies the design and development of difficult models using probabilistic programming and Lambda 
architecture. Evaluation of this framework is also presented in this paper using a case study to highlight the crucial potential of 
probabilistic programming to achieve simplification of model development and enable real-time reasoning on big data. Thus, 
demonstrating the effectiveness of the framework. Finally, results of this evaluation are presented in this paper. The Kognitor 
framework can be used to steer effective and easier implementation of complicated real-life situations as probabilistic models. 
This will be beneficial in the big data processing domain and for decision makers. Kognitor ensures cost-effectiveness using 
contemporary big data tools and technology on commodity hardware. Kognitor framework will also be beneficial in academia 
with respect to the use of probabilistic programming. 
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1. Introduction 

Planning, analysis and/or calculation generate facts, that are 
usually not organized. A collection of these facts can be 
referred to as data. Huge amount of data is produced and 
amassed, sometimes as a secondary product from the activities 
and processes of entities and individuals [1]. This huge data is 
termed big data. There are three popular qualities of big data: 
variety, high velocity, and high volume, also known as the 3Vs 
[2]. The 3Vs have formed the foundational definition of big 
data. 

Data is generated from multiple, unidentical sources with 
distinct level of uniformity [3]. This disparity in uniformity 
introduces noisy data that must be efficiently managed using 

novel techniques such as artificial intelligence and machine 
learning [4, 5]. To address uncertainty in big data, the machine 
learning research community introduced probabilistic 
reasoning. Probabilistic reasoning uses probability theory 
with deductive logic to enable formal reasoning especially in 
varying conditions [6–9]. Probabilistic reasoning is also used 
to interpret complicated situations to make decision making 
easier [10–12]. 

The process of decision making is now automated. 
Automated systems that aid in decision making are generally 
called probabilistic reasoning systems [13]. According to [14], 
probabilistic reasoning systems consist of probabilistic 
models and inferences algorithms. A probabilistic model is an 
all-inclusive generic information and components of a domain 
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encoded in probability theories such as Bayesian network [15], 
hidden Markov models [16, 17] and stochastic grammar [18–
21]. Probabilistic models as well as evidence are used by 
inference algorithms to produce probabilistic score as a 
response to queries. This procedure is known as probabilistic 
inference [14]. 

Designing a probabilistic model is a vigorous task that 
requires extreme technical expertise in fields such as natural 
language, mathematics, algorithms [8, 11, 22]. Again, many 
real-life situations are too expensive to model [14, 23–26]. In 
response to these issues, probabilistic programming emerged 
through efforts from the machine learning and programming 
language communities [24, 27]. 

According to [14, 24, 26], probabilistic programming is a 
relatively recent idea. Nevertheless, [28] advocates the 
capabilities of probabilistic programming in artificial 
intelligent systems. This paper presents a framework that 
demonstrates the effectiveness of probabilistic programming 
in the development of big data processing systems that uses 
complex probabilistic models. This paper also showcases the 
constructive integration of off the shelf, open-source 
contemporary tools and technology for big data on commodity 
hardware to realize Lambda architecture. 

The rest of the paper is organized as follows. Section 2 
presents the background knowledge around processing of big 
data, Lambda architecture, probabilistic reasoning, and 
probabilistic programming. In Section 3, similar 
projects/research is presented. Section 4 describes the 
Kognitor framework. Section 5 demonstrates an 
implementation of the framework using a case study. An 
evaluation of the framework is provided in Section 6. This 
paper ends with a conclusion presented in Section 7. 

2. Background 

Novel tools and techniques are required for the effective 
management and analysis of big data. Early technologies 
developed to analyze big data were mainly geared towards 
batch processing [29]. The majority of these batch processing 
tools used the MapReduce framework designed by Google 
[30]. A popular example of the batch processing big data tool 
implemented using MapReduce is Hadoop. Hadoop became 
widely accepted and extensively used in academia and 
industry [31–35]. Although MapReduce and Hadoop 
presented advantages in big data processing, they were 
unsuitable for processing high speed big data that requires low 
latency [36–40]. Thus, the need for big data stream 
processing. 

Stream processing sometimes referred as real-time 
processing deals with the velocity attribute of big data. Stream 
processing handles small pieces of data, thereby enabling low 
latency [29, 41–43]. Some examples of open-source stream 
processing systems are Apache Storm [44], Apache Spark [45] 
and SQLstream [46]. 

Decision makers require the processing of both static (high 
volume) and real-time data together for well informed decision 
making [47, 48]. Thus, stream processing or batch processing 

tools in isolation may not be the remedy in real-life situations. 
The need for solutions that support batch and real-time big data 
processing is apparent [49–51]. Solutions that support this 
combination are called hybrid computation. Some examples are 
Kappa architecture [50], the Liquid architecture [52] and 
Lambda architecture [49]. 

2.1. Lambda Architecture 

Lambda architecture was designed and proposed by [49] as 
a hybrid solution to big data issues. This architecture is made 
up of three layers – the batch layer, the serving layer, and the 
speed layer. Each of the three layers is responsible for a 
unique problem in big data. The functionalities of these 
layers are built on each other. The batch layer is the central 
part of Lambda architecture. Raw or unprocessed data is 
permanently stored in the batch layer. The unprocessed data 
in the batch layer is periodically processed using a batch 
processing framework to yield batch views. To balance the 
high latency batch processing, the speed layer employs 
incremental model to achieve real-time processing. Result 
from the processing in the speed layer is known as real-time 
views. As soon as processing on the same dataset is done in 
the batch layer, the corresponding real-time views are 
consequently discarded. The serving layer uses both the 
batch views and real-time views to provide low latency 
response to user queries [53–58]. 

2.2. Probabilistic Reasoning 

The process of decision making is sometimes 
straightforward, but in other cases, decision making may 
require complicated procedures which involves evidence 
from many sources [59]. This is clearly seen in uncertain 
circumstances where the odds of uncertain events influences 
decision making [13, 60]. The eventuality of an event is 
represented using probability. Thus, probabilistic reasoning 
simplifies decision making using underlying principles or 
knowledge and probability. Probabilistic reasoning is an 
integration of what holds true about a circumstance with the 
laws of probability [14]. 

Probabilistic reasoning systems are applications that 
automate the process of probabilistic reasoning. A 
probabilistic reasoning system is typically made up of an 
inference algorithm and a probabilistic model [14]. 
Probabilistic reasoning systems are useful for prediction, 
deduction, and improvement of general knowledge in a 
domain. 

2.3. Probabilistic Programming 

Due to the difficulty and complexity associated with 
modelling real-life scenarios as probabilistic models, the 
concept of probabilistic programming was introduced. 

Probabilistic programming uses the powerful 
characteristics of programming language to facilitate the 
representation of complex probabilistic models [14, 23, 61]. 
Thus, instead of expressing probabilistic models using 
Bayesian networks or hidden Markov models, procedures or 
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functions are used [12]. The automation of inference 
computation to handle uncertainty is also made easier using 
probabilistic programming [26, 27, 61, 62]. Church [51], 
Anglican [63], IBAL [64], BLOG [65], PRISM [66], and 
Figaro [14, 23] are some examples of probabilistic 
programming systems. 

3. Related Work 

It is believed that probabilistic programming would ease 
the process of designing complex probabilistic models. 
Research conducted by [67] to examine or measure the 
adoption of probabilistic programming in big data processing 
resulted in the identification of a solution called InferSpark 
[68]. At the time of publication, InferSpark claimed to be the 
only solution that uses probabilistic programming to provide 
efficient statistical inference on big data. The authors of 
InferSpark also recognized the potential of probabilistic 
programing in the development of complex probabilistic 
models, while pointing out drawbacks of contemporary 
probabilistic programming systems. 

An evaluation of InferSpark was provided. According to 
[68], InferSpark outperformed MLib, and Infer.NET. 
However, InferSpark implemented only one inference 
algorithm called Variation Messaging Passing (VMP). The 
framework presented in this paper improves on this using a 
probabilistic programming system called Figaro. Figaro 
allows the design of a probabilistic model using either 
Bayesian network, Markov models, or a combination of both. 
In addition, the Kognitor framework demonstrates and 
achieves low-latency computation by implementing Lambda 
architecture. 

4. System Architecture 

A major motivation for the Kognitor framework is the 
need to support real-time decision making in uncertain 
situations. Kognitor uses of probabilistic programming to 
enable easier development of real-life complex models, and 
Lambda architecture to achieve real-time big data processing 
with low latency. This framework also achieves 
cost-effective data processing using a combination of 
contemporary off-the-shelf tools and technologies on 
commodity hardware. Kognitor is made up of three 
components namely feeder, server, and storage. The three 
layers of Lambda architecture are implemented in the three 
components of Kognitor framework. 

4.1. Feeder Component 

This component is responsible for data ingestion into 
Kognitor. The flow of data into Kognitor is managed by the 
feeder component. Data from multiple sources can be 
aggregated in the feeder component. The feeder component 

also cleans up and filters unnecessary and unrelated data 
before persisting in the storage component. 

4.2. Storage Component 

The storage component houses data used by Kognitor 
framework. This component is made up of the master, 
pseudo-master, batch-view, and realtime-view databases. 
Each of these databases is responsible for a unique storage 
need of Kognitor. 

The master database is responsible for storing immutable, 
continuously expanding data. Thus, it should support batch 
reads and random writes. This forms an implementation of 
the batch layer as proposed by Lambda architecture. The 
pseudo-master database holds data as it arrives from the 
feeder component. 

The batch-view and realtime-view databases are used to 
store result of data processing done on the master and 
pseudo-master databases, respectively. 

In accordance with the Lambda architecture, the master 
database actualizes an implementation of the batch layer, the 
batch-view database actualizes part of the serving layer while 
the pseudo-master and realtime-view databases implement 
part of the speed layer. 

4.3. Server Component 

The central component of the Kognitor framework is the 
server component. All data processing is done by the server 
component. The server component is sub-divided into two 
modules: the batch module and the real-time module. 

The batch module performs computation on the data stored 
in the master database. This computation happens at a set 
time interval. On the other hand, as soon as data is available 
in the pseudo-master database, the real-time module performs 
computation on data. 

The batch module implements part of the batch layer of 
Lambda architecture, while the real-time module implements 
part of the speed layer. 

It is important to note that there are two types of 
computations done in the server component. The first is the 
learning computation. Kognitor uses an algorithm to learn 
from the data stored in both the master database and the 
pseudo-master database. Results from the learning 
computation done on master database are stored in the 
batch-view database while results from learning computation 
on pseudo-master data are stored in the realtime-view 
database. 

The second type of computation is the reasoning 
computation. Kognitor uses an inference algorithm alongside 
data from the batch-view and realtime-view databases to 
perform reasoning computation. Figure 1 shows all the 
components in Kognitor framework. 
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Figure 1. The Kognitor Framework. 

5. Case Study 

To show the effectiveness of Kognitor framework, an 
application called K4F was developed using Kognitor 
framework. K4F predicts the outcome of a football match. In 
this case study, two football teams were selected from the 
English Premiership League. 

5.1. Feeder Implementation 

Akka [69, 70] was used to implement the feeder 
component of Kognitor in K4F. A mock repository was used 
as a source of data for K4F. An Akka actor was implemented 
to act as a pipeline between the data repository and K4F. 
Another Akka actor was implemented to persist the data from 
the pipeline into the master and pseudo-master databases. 

5.2. Storage Implementation 

The storage component of Kognitor was implemented 
using Apache Cassandra [71] in K4F. In the master database, 
four tables were created to handle the storage need of K4F. 
The tables were team, rating, form, and fixture. The 
pseudo-master database also consists of same tables as in the 
master database. Tables were also created in the batch-view 

and realtime-view database to hold results of computations 
by the server component. 

5.3. Server Implementation 

In K4F, the server component was implemented using 
Figaro. Figaro represents probabilistic models using elements 
(variables), relationships between these elements, the 
functional parameters of the element relationships, and the 
numerical form of the functional parameters. In this case 
study, four variables were chosen to represent an indication 
of a win in a football match. The chosen elements are: 

a. Has Good Rating: A Boolean variable dependent on a 
team’s rating. The rating can take a value between 0 and 
10, 10 being the highest (best) rating. 

b. Has Good Form: A Boolean variable dependent on a 
team’s performance in their last six (6) games. 

c. Has Home Ground Advantage: A Boolean element 
dependent on a team’s performance when in their home 
ground. 

d. Is Winner: A Boolean element indicating the possibility 
of a win. 

The relationship between the chosen elements is shown in 
Figure 2. 

 
Figure 2. K4F Dependency model. 
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Next, the functional form of the dependencies is 
determined. In Figaro, the variable class constructors are 
used to express functional forms. According to Figure 2, the 
is Winner element is dependent on other elements, thus its 
functional form is: 

� = ����                        (1) 

��	�

�� = 
������                 (2) 

Flip is a construct used in Figaro to denote a Boolean 
value, and � is the probability of a win by a football team. 

Has Good Rating is defined as: 

� = 
���������                    (3) 

� = 
���������                    (4) 

ℎ����������
� = �� → �� ∧ �¬� → ��       (5) 

�  represents bad rating probability, �  represents good 
rating probability, and � represents a win probability. 

The functional form of has Good Form is: 

! = 
���������                     (6) 

" = 
���������                     (7) 

ℎ������
��# = �� → "� ∧ �¬� → !�           (8) 

!  is the probability of a team’s bad form, "  is the 
probability of a team’s good form, and � is the probability of 
a win. 

Has Home Ground Advantage is defined as: 

$ = 
���������                    (9) 

% = 
���������                      (10) 

Has Home Ground Advantage=(δ→ϑ ∧) (¬δ→θ)  (11) 

$  is the home ground loss probability, %  is the home 
ground win probability, and � is the probability of a win. 

The elements, their relationships, the functional form of the 
relationships and the numerical parameters together form a 
complete Figaro model for K4F. 

This case study uses the expectation maximization (EM) 
learning algorithm and the variable elimination inference 
algorithm. Both algorithms are provided by Figaro. 

6. Evaluation 

It is necessary to evaluate an artefact thus providing insight 
on the effectiveness and quality of the artefact [72, 73]. K4F 
was evaluated using experimental method. 

This experiment used Manchester United and Chelsea EPL 
teams. There previous games for 2017/2018 and 2018/2019 
season were used in this experiment. 

6.1. Learning Computation Results 

Learning computation was carried out three (3) times on the 
batch module of the server component, corresponding to the 
intake of data. On the real-time module, learning was done as 
many times as new data was ingested into K4F. Learning 
computation was repeated at least five (5) times on both batch 
and real-time module to access duration. 

Table 1. First run learning duration in seconds. 

Learning time for Manchester United (s) Learning time for Chelsea (s) Total Learning Time (s) 

0.48 0.994 1.474 

0.416 0.537 0.993 

0.383 0.534 0.917 

0.503 0.878 1.381 

0.581 0.757 1.338 

Average learning time (s) 1.2126 

Table 2. Second run learning duration in seconds (batch module). 

Learning time for Manchester United (s) Learning time for Chelsea (s) Total Learning Time (s) 

1.353 1.204 2.557 

1.605 1.997 3.602 

1.784 1.615 3.399 

1.689 4.985 3.674 

1.889 1.483 3.372 

Average learning time (s) 3.3208 

Table 3. Third run learning duration in seconds (batch module). 

Learning time for Manchester United (s) Learning time for Chelsea (s) Total Learning Time (s) 

2.948 3.222 6.17 

3.152 3.22 6.372 

2.625 2.942 5.567 

2.577 2.687 5.264 

3.047 2.587 5.634 

Average learning time (s) 5.8014 
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On the first ingestion of data, learning on both batch and 
real-time module took approximately 1.2 seconds (See Table 
1). Subsequently, as the size of data in the master database 
increases, the time to complete learning on the batch module 
also increased (See Tables 2 and 3). However, learning time on 
the real-time module remained in the same neighborhood. 

6.2. Reasoning Computation Results 

In K4F, a reasoning computation request is on the is Winner 
variable. K4F exposes reasoning on the batch module, server 
module and a combination of both. Table 4 shows the 
reasoning times in seconds. 

Table 4. Reasoning duration in seconds. 

 Reasoning time in real-time module (s) Reasoning time in batch module (s) Reasoning time in real-time & batch modules (s) 

First Run 0.038 0.032 0.053 
Second Run 0.043 0.031 0.06 
Third Run 0.04 0.041 0.061 
Fourth Run 0.029 0.030 0.063 
Fifth Run 0.054 0.022 0.058 
Average time (s) 0.0408 0.312 0.059 

 

7. Conclusion 

This paper presents a framework called Kognitor that 
proposes the adoption of probabilistic programming in big 
data processing. Kognitor also enables cost-effective and low 
latency data processing using Lambda architecture. 

This paper started with a discussion on the background 
knowledge around big data processing and an analysis of 
related works. Then, the introduction of the framework, as 
well as an implementation to showcase effectiveness. 
Evaluation of Kognitor was presented using experimental 
method on a case study (K4F). Performance result from this 
evaluation shows low latency in data computation. 

The aim of this paper is on probabilistic programming in big 
data computation. Thus, less effort was directed toward other 
components such as UX. This may constitute part of a future 
work. Another area for future work would be further evaluation 
of Kognitor framework using other evaluation methods. 
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