

International Journal on Data Science and Technology
2021; 7(2): 32-39
http://www.sciencepublishinggroup.com/j/ijdst
doi: 10.11648/j.ijdst.20210702.12
ISSN: 2472-2200 (Print); ISSN: 2472-2235 (Online)

Kognitor: Big Data Real-Time Reasoning and Probabilistic
Programming

Arinze Anikwue
*
, Boniface Kabaso

Information Technology Department, Cape Peninsula University of Technology, Cape Town, South Africa

Email address:

*Corresponding author

To cite this article:
Arinze Anikwue, Boniface Kabaso. Kognitor: Big Data Real-Time Reasoning and Probabilistic Programming. International Journal on Data

Science and Technology. Vol. 7, No. 2, 2021, pp. 32-39. doi: 10.11648/j.ijdst.20210702.12

Received: June 10, 2021; Accepted: July 9, 2021; Published: August 2, 2021

Abstract: There is a huge increase in the amount of generated data since the explosion of the Internet. This generated data
which is usually collected in different formats and from multiple sources is popularly termed Big Data. Big data contains
uncertainty. To handle uncertainty in big data, probabilistic reasoning is used to develop probabilistic models that specify generic
knowledge in different topics. These models are used in conjunction with an inference algorithm to enable decision makers
especially during uncertain situations. Extensive knowledge in fields such as statistics, machine learning and probability theories
are employed in the development of these probabilistic models. Thus, it is usually a difficult undertaking. Probabilistic
programming was introduced to simplify and enable development of complex models. Again, decision makers often need to use
knowledge from historic data as well as current data to make cogent decisions. Thus, the necessity to unify processing of historic
and real-time data with low latency. The Lambda architecture was introduced for this purpose. This paper presents a framework
called Kognitor that simplifies the design and development of difficult models using probabilistic programming and Lambda
architecture. Evaluation of this framework is also presented in this paper using a case study to highlight the crucial potential of
probabilistic programming to achieve simplification of model development and enable real-time reasoning on big data. Thus,
demonstrating the effectiveness of the framework. Finally, results of this evaluation are presented in this paper. The Kognitor
framework can be used to steer effective and easier implementation of complicated real-life situations as probabilistic models.
This will be beneficial in the big data processing domain and for decision makers. Kognitor ensures cost-effectiveness using
contemporary big data tools and technology on commodity hardware. Kognitor framework will also be beneficial in academia
with respect to the use of probabilistic programming.

Keywords: Big Data Processing, Probabilistic Model, Lambda Architecture, Probabilistic Programming

1. Introduction

Planning, analysis and/or calculation generate facts, that are
usually not organized. A collection of these facts can be
referred to as data. Huge amount of data is produced and
amassed, sometimes as a secondary product from the activities
and processes of entities and individuals [1]. This huge data is
termed big data. There are three popular qualities of big data:
variety, high velocity, and high volume, also known as the 3Vs
[2]. The 3Vs have formed the foundational definition of big
data.

Data is generated from multiple, unidentical sources with
distinct level of uniformity [3]. This disparity in uniformity
introduces noisy data that must be efficiently managed using

novel techniques such as artificial intelligence and machine
learning [4, 5]. To address uncertainty in big data, the machine
learning research community introduced probabilistic
reasoning. Probabilistic reasoning uses probability theory
with deductive logic to enable formal reasoning especially in
varying conditions [6–9]. Probabilistic reasoning is also used
to interpret complicated situations to make decision making
easier [10–12].

The process of decision making is now automated.
Automated systems that aid in decision making are generally
called probabilistic reasoning systems [13]. According to [14],
probabilistic reasoning systems consist of probabilistic
models and inferences algorithms. A probabilistic model is an
all-inclusive generic information and components of a domain

 International Journal on Data Science and Technology 2021; 7(2): 32-39 33

encoded in probability theories such as Bayesian network [15],
hidden Markov models [16, 17] and stochastic grammar [18–
21]. Probabilistic models as well as evidence are used by
inference algorithms to produce probabilistic score as a
response to queries. This procedure is known as probabilistic
inference [14].

Designing a probabilistic model is a vigorous task that
requires extreme technical expertise in fields such as natural
language, mathematics, algorithms [8, 11, 22]. Again, many
real-life situations are too expensive to model [14, 23–26]. In
response to these issues, probabilistic programming emerged
through efforts from the machine learning and programming
language communities [24, 27].

According to [14, 24, 26], probabilistic programming is a
relatively recent idea. Nevertheless, [28] advocates the
capabilities of probabilistic programming in artificial
intelligent systems. This paper presents a framework that
demonstrates the effectiveness of probabilistic programming
in the development of big data processing systems that uses
complex probabilistic models. This paper also showcases the
constructive integration of off the shelf, open-source
contemporary tools and technology for big data on commodity
hardware to realize Lambda architecture.

The rest of the paper is organized as follows. Section 2
presents the background knowledge around processing of big
data, Lambda architecture, probabilistic reasoning, and
probabilistic programming. In Section 3, similar
projects/research is presented. Section 4 describes the
Kognitor framework. Section 5 demonstrates an
implementation of the framework using a case study. An
evaluation of the framework is provided in Section 6. This
paper ends with a conclusion presented in Section 7.

2. Background

Novel tools and techniques are required for the effective
management and analysis of big data. Early technologies
developed to analyze big data were mainly geared towards
batch processing [29]. The majority of these batch processing
tools used the MapReduce framework designed by Google
[30]. A popular example of the batch processing big data tool
implemented using MapReduce is Hadoop. Hadoop became
widely accepted and extensively used in academia and
industry [31–35]. Although MapReduce and Hadoop
presented advantages in big data processing, they were
unsuitable for processing high speed big data that requires low
latency [36–40]. Thus, the need for big data stream
processing.

Stream processing sometimes referred as real-time
processing deals with the velocity attribute of big data. Stream
processing handles small pieces of data, thereby enabling low
latency [29, 41–43]. Some examples of open-source stream
processing systems are Apache Storm [44], Apache Spark [45]
and SQLstream [46].

Decision makers require the processing of both static (high
volume) and real-time data together for well informed decision
making [47, 48]. Thus, stream processing or batch processing

tools in isolation may not be the remedy in real-life situations.
The need for solutions that support batch and real-time big data
processing is apparent [49–51]. Solutions that support this
combination are called hybrid computation. Some examples are
Kappa architecture [50], the Liquid architecture [52] and
Lambda architecture [49].

2.1. Lambda Architecture

Lambda architecture was designed and proposed by [49] as
a hybrid solution to big data issues. This architecture is made
up of three layers – the batch layer, the serving layer, and the
speed layer. Each of the three layers is responsible for a
unique problem in big data. The functionalities of these
layers are built on each other. The batch layer is the central
part of Lambda architecture. Raw or unprocessed data is
permanently stored in the batch layer. The unprocessed data
in the batch layer is periodically processed using a batch
processing framework to yield batch views. To balance the
high latency batch processing, the speed layer employs
incremental model to achieve real-time processing. Result
from the processing in the speed layer is known as real-time
views. As soon as processing on the same dataset is done in
the batch layer, the corresponding real-time views are
consequently discarded. The serving layer uses both the
batch views and real-time views to provide low latency
response to user queries [53–58].

2.2. Probabilistic Reasoning

The process of decision making is sometimes
straightforward, but in other cases, decision making may
require complicated procedures which involves evidence
from many sources [59]. This is clearly seen in uncertain
circumstances where the odds of uncertain events influences
decision making [13, 60]. The eventuality of an event is
represented using probability. Thus, probabilistic reasoning
simplifies decision making using underlying principles or
knowledge and probability. Probabilistic reasoning is an
integration of what holds true about a circumstance with the
laws of probability [14].

Probabilistic reasoning systems are applications that
automate the process of probabilistic reasoning. A
probabilistic reasoning system is typically made up of an
inference algorithm and a probabilistic model [14].
Probabilistic reasoning systems are useful for prediction,
deduction, and improvement of general knowledge in a
domain.

2.3. Probabilistic Programming

Due to the difficulty and complexity associated with
modelling real-life scenarios as probabilistic models, the
concept of probabilistic programming was introduced.

Probabilistic programming uses the powerful
characteristics of programming language to facilitate the
representation of complex probabilistic models [14, 23, 61].
Thus, instead of expressing probabilistic models using
Bayesian networks or hidden Markov models, procedures or

34 Arinze Anikwue and Boniface Kabaso: Kognitor: Big Data Real-Time
Reasoning and Probabilistic Programming

functions are used [12]. The automation of inference
computation to handle uncertainty is also made easier using
probabilistic programming [26, 27, 61, 62]. Church [51],
Anglican [63], IBAL [64], BLOG [65], PRISM [66], and
Figaro [14, 23] are some examples of probabilistic
programming systems.

3. Related Work

It is believed that probabilistic programming would ease
the process of designing complex probabilistic models.
Research conducted by [67] to examine or measure the
adoption of probabilistic programming in big data processing
resulted in the identification of a solution called InferSpark
[68]. At the time of publication, InferSpark claimed to be the
only solution that uses probabilistic programming to provide
efficient statistical inference on big data. The authors of
InferSpark also recognized the potential of probabilistic
programing in the development of complex probabilistic
models, while pointing out drawbacks of contemporary
probabilistic programming systems.

An evaluation of InferSpark was provided. According to
[68], InferSpark outperformed MLib, and Infer.NET.
However, InferSpark implemented only one inference
algorithm called Variation Messaging Passing (VMP). The
framework presented in this paper improves on this using a
probabilistic programming system called Figaro. Figaro
allows the design of a probabilistic model using either
Bayesian network, Markov models, or a combination of both.
In addition, the Kognitor framework demonstrates and
achieves low-latency computation by implementing Lambda
architecture.

4. System Architecture

A major motivation for the Kognitor framework is the
need to support real-time decision making in uncertain
situations. Kognitor uses of probabilistic programming to
enable easier development of real-life complex models, and
Lambda architecture to achieve real-time big data processing
with low latency. This framework also achieves
cost-effective data processing using a combination of
contemporary off-the-shelf tools and technologies on
commodity hardware. Kognitor is made up of three
components namely feeder, server, and storage. The three
layers of Lambda architecture are implemented in the three
components of Kognitor framework.

4.1. Feeder Component

This component is responsible for data ingestion into
Kognitor. The flow of data into Kognitor is managed by the
feeder component. Data from multiple sources can be
aggregated in the feeder component. The feeder component

also cleans up and filters unnecessary and unrelated data
before persisting in the storage component.

4.2. Storage Component

The storage component houses data used by Kognitor
framework. This component is made up of the master,
pseudo-master, batch-view, and realtime-view databases.
Each of these databases is responsible for a unique storage
need of Kognitor.

The master database is responsible for storing immutable,
continuously expanding data. Thus, it should support batch
reads and random writes. This forms an implementation of
the batch layer as proposed by Lambda architecture. The
pseudo-master database holds data as it arrives from the
feeder component.

The batch-view and realtime-view databases are used to
store result of data processing done on the master and
pseudo-master databases, respectively.

In accordance with the Lambda architecture, the master
database actualizes an implementation of the batch layer, the
batch-view database actualizes part of the serving layer while
the pseudo-master and realtime-view databases implement
part of the speed layer.

4.3. Server Component

The central component of the Kognitor framework is the
server component. All data processing is done by the server
component. The server component is sub-divided into two
modules: the batch module and the real-time module.

The batch module performs computation on the data stored
in the master database. This computation happens at a set
time interval. On the other hand, as soon as data is available
in the pseudo-master database, the real-time module performs
computation on data.

The batch module implements part of the batch layer of
Lambda architecture, while the real-time module implements
part of the speed layer.

It is important to note that there are two types of
computations done in the server component. The first is the
learning computation. Kognitor uses an algorithm to learn
from the data stored in both the master database and the
pseudo-master database. Results from the learning
computation done on master database are stored in the
batch-view database while results from learning computation
on pseudo-master data are stored in the realtime-view
database.

The second type of computation is the reasoning
computation. Kognitor uses an inference algorithm alongside
data from the batch-view and realtime-view databases to
perform reasoning computation. Figure 1 shows all the
components in Kognitor framework.

 International Journal on Data Science and Technology 2021; 7(2): 32-39 35

Figure 1. The Kognitor Framework.

5. Case Study

To show the effectiveness of Kognitor framework, an
application called K4F was developed using Kognitor
framework. K4F predicts the outcome of a football match. In
this case study, two football teams were selected from the
English Premiership League.

5.1. Feeder Implementation

Akka [69, 70] was used to implement the feeder
component of Kognitor in K4F. A mock repository was used
as a source of data for K4F. An Akka actor was implemented
to act as a pipeline between the data repository and K4F.
Another Akka actor was implemented to persist the data from
the pipeline into the master and pseudo-master databases.

5.2. Storage Implementation

The storage component of Kognitor was implemented
using Apache Cassandra [71] in K4F. In the master database,
four tables were created to handle the storage need of K4F.
The tables were team, rating, form, and fixture. The
pseudo-master database also consists of same tables as in the
master database. Tables were also created in the batch-view

and realtime-view database to hold results of computations
by the server component.

5.3. Server Implementation

In K4F, the server component was implemented using
Figaro. Figaro represents probabilistic models using elements
(variables), relationships between these elements, the
functional parameters of the element relationships, and the
numerical form of the functional parameters. In this case
study, four variables were chosen to represent an indication
of a win in a football match. The chosen elements are:

a. Has Good Rating: A Boolean variable dependent on a
team’s rating. The rating can take a value between 0 and
10, 10 being the highest (best) rating.

b. Has Good Form: A Boolean variable dependent on a
team’s performance in their last six (6) games.

c. Has Home Ground Advantage: A Boolean element
dependent on a team’s performance when in their home
ground.

d. Is Winner: A Boolean element indicating the possibility
of a win.

The relationship between the chosen elements is shown in
Figure 2.

Figure 2. K4F Dependency model.

36 Arinze Anikwue and Boniface Kabaso: Kognitor: Big Data Real-Time
Reasoning and Probabilistic Programming

Next, the functional form of the dependencies is
determined. In Figaro, the variable class constructors are
used to express functional forms. According to Figure 2, the
is Winner element is dependent on other elements, thus its
functional form is:

� = ���� (1)

��	�

�� =
������ (2)

Flip is a construct used in Figaro to denote a Boolean
value, and � is the probability of a win by a football team.

Has Good Rating is defined as:

� =
��������� (3)

� =
��������� (4)

ℎ����������
� = �� → �� ∧ �¬� → �� (5)

� represents bad rating probability, � represents good
rating probability, and � represents a win probability.

The functional form of has Good Form is:

! =
��������� (6)

" =
��������� (7)

ℎ������
��# = �� → "� ∧ �¬� → !� (8)

! is the probability of a team’s bad form, " is the
probability of a team’s good form, and � is the probability of
a win.

Has Home Ground Advantage is defined as:

$ =
��������� (9)

% =
��������� (10)

Has Home Ground Advantage=(δ→ϑ ∧) (¬δ→θ) (11)

$ is the home ground loss probability, % is the home
ground win probability, and � is the probability of a win.

The elements, their relationships, the functional form of the
relationships and the numerical parameters together form a
complete Figaro model for K4F.

This case study uses the expectation maximization (EM)
learning algorithm and the variable elimination inference
algorithm. Both algorithms are provided by Figaro.

6. Evaluation

It is necessary to evaluate an artefact thus providing insight
on the effectiveness and quality of the artefact [72, 73]. K4F
was evaluated using experimental method.

This experiment used Manchester United and Chelsea EPL
teams. There previous games for 2017/2018 and 2018/2019
season were used in this experiment.

6.1. Learning Computation Results

Learning computation was carried out three (3) times on the
batch module of the server component, corresponding to the
intake of data. On the real-time module, learning was done as
many times as new data was ingested into K4F. Learning
computation was repeated at least five (5) times on both batch
and real-time module to access duration.

Table 1. First run learning duration in seconds.

Learning time for Manchester United (s) Learning time for Chelsea (s) Total Learning Time (s)

0.48 0.994 1.474

0.416 0.537 0.993

0.383 0.534 0.917

0.503 0.878 1.381

0.581 0.757 1.338

Average learning time (s) 1.2126

Table 2. Second run learning duration in seconds (batch module).

Learning time for Manchester United (s) Learning time for Chelsea (s) Total Learning Time (s)

1.353 1.204 2.557

1.605 1.997 3.602

1.784 1.615 3.399

1.689 4.985 3.674

1.889 1.483 3.372

Average learning time (s) 3.3208

Table 3. Third run learning duration in seconds (batch module).

Learning time for Manchester United (s) Learning time for Chelsea (s) Total Learning Time (s)

2.948 3.222 6.17

3.152 3.22 6.372

2.625 2.942 5.567

2.577 2.687 5.264

3.047 2.587 5.634

Average learning time (s) 5.8014

 International Journal on Data Science and Technology 2021; 7(2): 32-39 37

On the first ingestion of data, learning on both batch and
real-time module took approximately 1.2 seconds (See Table
1). Subsequently, as the size of data in the master database
increases, the time to complete learning on the batch module
also increased (See Tables 2 and 3). However, learning time on
the real-time module remained in the same neighborhood.

6.2. Reasoning Computation Results

In K4F, a reasoning computation request is on the is Winner
variable. K4F exposes reasoning on the batch module, server
module and a combination of both. Table 4 shows the
reasoning times in seconds.

Table 4. Reasoning duration in seconds.

 Reasoning time in real-time module (s) Reasoning time in batch module (s) Reasoning time in real-time & batch modules (s)

First Run 0.038 0.032 0.053
Second Run 0.043 0.031 0.06
Third Run 0.04 0.041 0.061
Fourth Run 0.029 0.030 0.063
Fifth Run 0.054 0.022 0.058
Average time (s) 0.0408 0.312 0.059

7. Conclusion

This paper presents a framework called Kognitor that
proposes the adoption of probabilistic programming in big
data processing. Kognitor also enables cost-effective and low
latency data processing using Lambda architecture.

This paper started with a discussion on the background
knowledge around big data processing and an analysis of
related works. Then, the introduction of the framework, as
well as an implementation to showcase effectiveness.
Evaluation of Kognitor was presented using experimental
method on a case study (K4F). Performance result from this
evaluation shows low latency in data computation.

The aim of this paper is on probabilistic programming in big
data computation. Thus, less effort was directed toward other
components such as UX. This may constitute part of a future
work. Another area for future work would be further evaluation
of Kognitor framework using other evaluation methods.

References

[1] A. McAfee, E. Brynjolfsson, Big data: the management
revolution., Harv. Bus. Rev. 90 (2012) 59–68.
https://doi.org/10.1007/s12599-013-0249-5.

[2] D. Laney, 3D Data Managment: Controlling Data Volume,
Velocity and Variety, Meta Group, 2001.

[3] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou,
J. M. Patel, R. Ramakrishnan, C. Shahabi, Big data and its
technical challenges, Commun. ACM. 57 (2014) 86–94.
https://doi.org/10.1145/2611567.

[4] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C.
Roxburgh, A. H. Byers, Big data: The next frontier for innovation,
competition, and productivity, McKinsey & Company, 2011.

[5] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin, M.
Jordan, MLbase: A Distributed Machine-learning System, 6th
Bienn. Conf. Innov. Data Syst. Res. (2013).

[6] P. Szolovits, S. G. Pauker, Categorical and probabilistic
reasoning in medical diagnosis, Artif. Intell. 11 (1978) 115–
144. https://doi.org/10.1016/0004-3702(78)90014-0.

[7] R. Haenni, Towards a unifying theory of logical and
probabilistic reasoning, Isipta. 5 (2005) 1.

[8] G. Luger, C. Chakrabarti, Knowledge-Based Probabilistic
Reasoning from Expert Systems to Graphical Models, Handb.
Probab. Theory Appl. (2008) 2–22.
http://www.cs.unm.edu/~luger/23-Luger-Chakrabarti.pdf.

[9] N. Alon, Paul Erdős and probabilistic reasoning, in: Bolyai Soc.
Math. Stud., 2013: pp. 11–33.
https://doi.org/10.1007/978-3-642-39286-3_1.

[10] J. Gonzalez, Parallel and Distributed Systems for Probabilistic
Reasoning, Carnegie Mellon University, 2012.

[11] C. Dobre, F. Xhafa, Parallel Programming Paradigms and
Frameworks in Big Data Era, Int. J. Parallel Program. 42 (2014)
710–738. https://doi.org/10.1007/s10766-013-0272-7.

[12] Z. Ghahramani, Probabilistic machine learning and artificial
intelligence, Nature. 521 (2015) 452–459.
https://doi.org/10.1038/nature14541.

[13] L. A. Zadeh, Toward a perception-based theory of probabilistic
reasoning with imprecise probabilities, in: Intell. Syst. Inf.
Process., Elsevier, 2003: pp. 3–34.
https://doi.org/10.1016/B978-044451379-3/50001-7.

[14] A. Pfeffer, Practical probabilistic programming, Manning,
New York, 2016.

[15] S. Liu, A. H. B. Duffy, R. I. Whitfield, I. M. Boyle, Integration
of decision support systems to improve decision support
performance, Knowl. Inf. Syst. 22 (2010) 261–286.
https://doi.org/10.1007/s10115-009-0192-4.

[16] L. R. Rabiner, A tutorial on hidden Markov models and
selected applications in speech recognition, Proc. IEEE. 77
(1989) 257–286. https://doi.org/10.1109/5.18626.

[17] R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological
sequence analysis, Cambridge University Press, New York,
1998. https://doi.org/10.1017/CBO9780511790492.

[18] C. D. Manning, P. Raghavan, An Introduction to Information
Retrieval, in: Online, 2009: p. 1.
https://doi.org/10.1109/LPT.2009.2020494.

[19] L. De Raedt, K. Kersting, Probabilistic logic learning, ACM
SIGKDD Explor. Newsl. 5 (2003) 31.
https://doi.org/10.1145/959242.959247.

38 Arinze Anikwue and Boniface Kabaso: Kognitor: Big Data Real-Time
Reasoning and Probabilistic Programming

[20] E. Ábrahám, K. Havelund, Some recent advances in automated
analysis, Int. J. Softw. Tools Technol. Transf. 18 (2016) 121–
128. https://doi.org/10.1007/s10009-015-0403-0.

[21] D. Williams, Predictive coding and thought, Synthese. (2018).
https://doi.org/10.1007/s11229-018-1768-x.

[22] Q. Zhang, C. Dong, Y. Cui, Z. Yang, Dynamic uncertain
causality graph for knowledge representation and probabilistic
reasoning: Statistics base, matrix, and application, IEEE Trans.
Neural Networks Learn. Syst. 25 (2014) 645–663.
https://doi.org/10.1109/TNNLS.2013.2279320.

[23] A. Pfeffer, Figaro: An object-oriented probabilistic
programming language, 2009.
http://www.cs.tufts.edu/~nr/cs257/archive/avi-pfeffer/figaro.p
df%5Cnpapers2://publication/uuid/0E83E526-451F-41EA-AC
BE-7150FF7584D4.

[24] A. Sampson, Probabilistic Programming, (2015).
http://adriansampson.net/doc/ppl.html (accessed March 25,
2018).

[25] D. Roy, Probabilistic Programming, (2018).
http://www.probabilistic-programming.org/wiki/Home
(accessed March 25, 2018).

[26] N. D. Goodman, A. Stuhlmüller, the Design and
Implementation of Probabilistic Programming Languages,
(2014). http://dippl.org (accessed March 25, 2018).

[27] M. Hicks, What is probabilistic programming? (The
Programming Languages Enthusiast), (2014).
http://www.pl-enthusiast.net/2014/09/08/probabilistic-progra
mming/ (accessed March 25, 2018).

[28] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, S. J. Gershman,
Building machines that learn and think like people, Behav.
Brain Sci. 40 (2017) 72.
https://doi.org/10.1017/S0140525X16001837.

[29] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J.
Mellor-Crummey, N. R. Tallent, HPCTOOLKIT: Tools for
performance analysis of optimized parallel programs, Concurr.
Comput. Pract. Exp. 22 (2010) 685–701.
https://doi.org/10.1002/cpe.

[30] S. Shahrivari, Beyond Batch Processing: Towards Real-Time
and Streaming Big Data, Computers. 3 (2014) 117–129.
https://doi.org/10.3390/computers3040117.

[31] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, B. Moon, Parallel
data processing with MapReduce, ACM SIGMOD Rec. 40
(2012) 11–20. https://doi.org/10.1145/2094114.2094118.

[32] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, Wei Ding, Data
mining with big data, IEEE Trans. Knowl. Data Eng. 26 (2014)
97–107. https://doi.org/10.1109/TKDE.2013.109.

[33] S. Chen, W. Li, M. Li, X. Zhang, Y. Min, Latest Progress and
Infrastructure Innovations of Big Data Technology, in: 2014 Int.
Conf. Cloud Comput. Big Data, IEEE, 2014: pp. 8–15.
https://doi.org/10.1109/CCBD.2014.25.

[34] W. Raghupathi, V. Raghupathi, Big data analytics in healthcare:
promise and potential, Heal. Inf. Sci. Syst. 2 (2014) 3.
https://doi.org/10.1186/2047-2501-2-3.

[35] J. Lin, F. Leu, Y. Chen, ReHRS: A Hybrid Redundant System
for Improving MapReduce Reliability and Availability, in:
2015: pp. 187–209.

https://doi.org/10.1007/978-3-319-09177-8_8.

[36] I. Taxidou, P. Fischer, Realtime analysis of information
diffusion in social media, Proc. VLDB Endow. 6 (2013) 1416–
1421. https://doi.org/10.14778/2536274.2536328.

[37] S. Sagiroglu, D. Sinanc, Big data: A review, in: 2013 Int. Conf.
Collab. Technol. Syst., IEEE, 2013: pp. 42–47.
https://doi.org/10.1109/CTS.2013.6567202.

[38] Y. Wu, L. Zheng, B. Heilig, G. R. Gao, Design and Evaluation
of a Novel Dataflow Based Bigdata Solution, Proc. Sixth Int.
Work. Program. Model. Appl. Multicores Manycores. (2015)
40–48. https://doi.org/10.1145/2712386.2712397.

[39] A. Vakali, P. Korosoglou, P. Daoglou, A multi-layer
software architecture framework for adaptive real-time
analytics, in: 2016 IEEE Int. Conf. Big Data (Big Data),
IEEE, 2016: pp. 2425–2430.
https://doi.org/10.1109/BigData.2016.7840878.

[40] S. K. Mohapatra, P. K. Sahoo, S.-L. Wu, Big data analytic
architecture for intruder detection in heterogeneous wireless
sensor networks, J. Netw. Comput. Appl. 66 (2016) 236–249.
https://doi.org/10.1016/j.jnca.2016.03.004.

[41] S. Perera, S. Suhothayan, Solution patterns for realtime
streaming analytics, in: Proc. 9th ACM Int. Conf. Distrib.
Event-Based Syst. - DEBS ’15, ACM Press, New York, New
York, USA, 2015: pp. 247–255.
https://doi.org/10.1145/2675743.2774214.

[42] M. Wang, J. Liu, W. Zhou, Design and Implementation of a
High-Performance Stream-Oriented Big Data Processing
System, in: 2016 8th Int. Conf. Intell. Human-Machine Syst.
Cybern., IEEE, 2016: pp. 363–368.
https://doi.org/10.1109/IHMSC.2016.64.

[43] M. Hirzel, S. Schneider, B. Gedik, SPL: An Extensible
Language for Distributed Stream Processing, ACM Trans.
Program. Lang. Syst. 39 (2017) 1–39.
https://doi.org/10.1145/3039207.

[44] Apache Software Foundation, Apache Storm, (2015).
http://storm.apache.org/ (accessed February 13, 2018).

[45] M. Zaharia, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker,
I. Stoica, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, Apache Spark: a unified
engine for big data processing, Commun. ACM. 59 (2016) 56–
65. https://doi.org/10.1145/2934664.

[46] SQLstream, SQLstream - A SQL-based Real-time Stream
Analytics Platform -, (2017). http://sqlstream.com/ (accessed
February 15, 2018).

[47] B. Twardowski, D. Ryzko, Multi-agent Architecture for
Real-Time Big Data Processing, in: 2014 IEEE/WIC/ACM Int.
Jt. Conf. Web Intell. Intell. Agent Technol., IEEE, 2014: pp.
333–337. https://doi.org/10.1109/WI-IAT.2014.185.

[48] M. Kiran, P. Murphy, I. Monga, J. Dugan, S. S. Baveja,
Lambda architecture for cost-effective batch and speed big data
processing, in: 2015 IEEE Int. Conf. Big Data (Big Data), IEEE,
2015: pp. 2785–2792.
https://doi.org/10.1109/BigData.2015.7364082.

[49] N. Marz, J. Warren, Big Data: Principles and best practices of
scalable real-time data systems, Manning, New York, 2015.
http://nathanmarz.com/about/.

 International Journal on Data Science and Technology 2021; 7(2): 32-39 39

[50] J. Kreps, Questioning the Lambda Architecture, O’Reilly.
(2014) 1–10.
https://www.oreilly.com/ideas/questioning-the-lambda-archite
cture (accessed October 18, 2017).

[51] N. D. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, J. B.
Tenenbaum, Church: a language for generative models, in:
Proc. 24th Conf. Uncertain. Artif. Intell., 2008: pp. 220–229.
https://doi.org/10.1.1.151.7160.

[52] R. C. Fernandez, P. Pietzuch, J. Kreps, N. Narkhede, J. Rao, J.
Koshy, D. Lin, C. Riccomini, G. Wang, Liquid: Unifying
Nearline and Offline Big Data Integration, Conf. Innov. Data
Syst. Res. (2015).

[53] Z. Hasani, M. Kon-Popovska, G. Velinov, Lambda
Architecture for Real Time Big Data Analytic, ICT Innov.
(2014) 133–143.

[54] V. Astakhov, M. Chayel, Lambda Architecture for Batch and
Real- Time Processing on AWS with Spark Streaming and
Spark SQL, (2015) 1–12.
https://d0.awsstatic.com/whitepapers/lambda-architecure-on-f
or-batch-aws.pdf.

[55] M. Köhler, Y. Kaniovskyi, S. Benkner, Towards adaptive
execution strategies for large-scale and real-time data analytics,
Proc. Int. Conf. Parallel Distrib. Process. Tech. Appl. (2015)
447–454.

[56] G. Liu, W. Zhu, C. Saunders, F. Gao, Y. Yu, Real-time
Complex Event Processing and Analytics for Smart Grid,
Procedia Comput. Sci. 61 (2015) 113–119.
https://doi.org/10.1016/j.procs.2015.09.169.

[57] J. C. C. Tseng, J. Gu, P. F. Wang, C. Chen, C. Li, V. S. Tseng,
A scalable complex event analytical system with incremental
episode mining over data streams, in: 2016 IEEE Congr. Evol.
Comput., IEEE, 2016: pp. 648–655.
https://doi.org/10.1109/CEC.2016.7743854.

[58] F. Yang, G. Merlino, N. Ray, X. Léauté, H. Gupta, E. Tschetter,
The RADStack: Open Source Lambda Architecture for
Interactive Analytics, in: Proc. 50th Hawaii Int. Conf. Syst. Sci.,
2017: pp. 1703–1712.
https://doi.org/10.24251/HICSS.2017.206.

[59] T. Yang, M. N. Shadlen, Probabilistic reasoning by neurons,
Nature. 447 (2007) 1075–1080.
https://doi.org/10.1038/nature05852.

[60] A. Tversky, D. Kahneman, Probabilistic Reasoning,
Probabilistic Reason. 1131 (1983) 1124–1131.
https://doi.org/10.1142/9789814291354_0006

[61] A. Prékopa, Probabilistic Programming, in: Handbooks Oper.
Res. Manag. Sci., 2003: pp. 267–351.
https://doi.org/10.1016/S0927-0507(03)10005-9.

[62] T. Gehr, S. Misailovic, M. Vechev, PSI: Exact Symbolic
Inference for Probabilistic Programs, in: S. Chaudhuri, A.
Farzan (Eds.), Int. Conf. Comput. Aided Verif., Springer,
Cham, 2016: pp. 62–83.
https://doi.org/10.1007/978-3-319-41528-4_4.

[63] F. Wood, J. W. van de Meent, V. Mansinghka, A New
Approach to Probabilistic Programming Inference, in: 17th Int.
Conf. Artif. Intell. Stat., Reykjavik, Iceland, 2014.
http://arxiv.org/abs/1507.00996.

[64] A. Pfeffer, The Design and Implementation of IBAL: A
General-Purpose Probabilistic Language, Introd. to Stat.
Relational Learn. (2007) 34.

[65] B. Milch, B. Marthi, S. Russel, D. Sontag, D. L. Ong, A.
Kolobov, Probabilistic models with unknown objects, Stat.
Relational Learn. (2007) 352.

[66] T. Sato, A glimpse of symbolic-statistical modeling by PRISM,
J. Intell. Inf. Syst. 31 (2008) 161–176.
https://doi.org/10.1007/s10844-008-0062-7.

[67] A. Anikwue, B. Kabaso, Probabilistic Programming and Big
Data, in: 2019 Int. Conf. Adv. Big Data, Comput. Data
Commun. Syst., IEEE, 2019: pp. 1–6.
https://doi.org/10.1109/ICABCD.2019.8851053.

[68] Z. Zhao, J. Pei, E. Lo, K. Q. Zhu, C. Liu, InferSpark: Statistical
Inference at Scale, (2017). http://arxiv.org/abs/1707.02047.

[69] Lightbend Inc., Introduction - Akka Documentation, (2019).
https://doc.akka.io/docs/akka/current/stream/stream-introducti
on.html (accessed June 8, 2019).

[70] Lightbend Inc, Akka, Actor-based message-driven runtime |
@lightbend, (2010). https://www.lightbend.com/akka
(accessed November 10, 2017).

[71] The Apache Software Foundation, Apache Cassandra Database,
Cassandra. (2015). http://cassandra.apache.org/ (accessed
December 20, 2018).

[72] A. R. Hevner, S. T. March, J. Park, S. Ram, Design Science in
Information Systems Research, MIS Q. 28 (2004) 75–105.
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR0
4.

[73] A. Hevner, S. Chatterjee, Design Science Research in
Information Systems, in: Des. Res. Inf. Syst., Springer US,
Boston, MA, 2010: pp. 9–22.
https://doi.org/10.1007/978-1-4419-5653-8_2.

