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Abstract: To explore the conjunction of abnormal changes among different processes is a key and challenging technique 

problem in processes monitoring, in faults analysis, and in faults location. In this paper, an indication series is used to symbolize 

the abnormal change in sampling series, two kinds of conjunction test indices are constructed to measure the conjunction 

degrees, which rely on the indication series of multidimensional synchronization sampling series and the abnormal change 

percentage series of multidimensional asynchronous sampling series separately. What is more, these conjunction-test indices are 

successfully used to set up the clustering algorithms of abnormal changes in multidimensional series. Some Monte Carlo results 

show that algorithms given in this paper are efficient. The idea and technological methods of this paper are helpful for us to get 

viable approaches to analyze abnormal changes and to diagnose faults in large-scale dynamic system. 
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1. Introduction 

In order to know the in-orbit states of a spacecraft and to 

make sure its safe spaceflight, there are quite a lot of telemetry 

data flow must be checked and analyzed, which received from 

on-orbit spacecraft. For example, there are one hundred 

thousand various telemetry devices, which are fixed on 

spacecraft in space station and used to obtain the information 

of operation states. From spacecraft safety point of view, the 

telemetry data flow is the most reliable the source of 

information to directly monitor states and to find out faults of 

spacecraft which is running in orbit. In a certain extent, 

telemetry-data flow is the most dependent window that can 

help us to understand the true states and to manage its health 

[1] of spacecraft in orbit. 

But, it is very sorry that telemetry data flow is not 

absolutely reliable. In other words, it is possible that there are 

mishaps taking place at any steps or nodes of the whole 

process from measuring, coding, transmission, and receiving 

to decoding of the spacecraft telemetry data flow, such as 

abnormal changes and faults of spacecraft as well as telemetry 

device, which may cause abnormalities of multi-dimensional 

telemetry data flow [2, 3]. 

Some research progress reveals that it is very important 

how to scientifically analysis such numerous telemetry data 

flow so as to discover whether the spacecraft works in normal 

states or not, which is not only a significant technical problem 

in engineering fields, but also a scientific problem in academic 

researches, which need to innovate some new approaches to 

do further analysis. The first reason is that the complexity of 

telemetry data flow from spacecraft in orbit: telemetry data 

flows are high dimensional, time-varying, heterogeneous, 

nonlinear time series with disturbances and the telemetry data 

time series is far more complicated than the sampling of 

industrial and economic fields; the second reason is that the 

space environment of generating spacecraft telemetry data is 

complicated and indeterminate, such as impurities and 

asynchronous sampling and data flow disconnection etc. 

These reasons stated above directly affect the usability of 

conventional methods of time series analysis. 

In order to analysis relationship of abnormal changes taking 

place at different data sequences among multidimensional 
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telemetry data flow, there are some conventional approaches 

which are based on the correlation analysis and regression 

analysis of stationary series and mainly focus on exploring the 

connection among the different data series value [1-3]. 

Maybe, some quantitative or qualitative analysis methods 

[4-6], which are based on data mining and knowledge 

discovery technologies, are usable to explore the inherent 

regularity or characteristic information, and some fault 

detection and diagnosis algorithms [7-11], which are based on 

the threshold monitoring as well as data driven detection, may 

be directly realized from telemetry data. But, there were few 

studies discussed the results about inherent relevance between 

the homologous data abnormal changes in a multidimensional 

telemetry data flow, which may be give us some valuable 

inspiration where the faults arise and which kind of faults 

result in abnormal changes in part of the multidimensional 

telemetry data flow. Because of the reasons stated above, 

some practical problems, such as clustering of abnormality 

changes in telemetry data flow and monitoring of health states 

and so on, are combined into consideration and new clustering 

methods oriented at process abnormal changes are proposed in 

the following sections. 

2. Conjunction Detection Algorithms 

In order to simplify statements, assuming that there are m  

telemetry devices and m  series of telemetry data sequence 

0{ ( ) | [ , ], 1, , }k k i i eS f t t t t i n= ∈ = ⋯  ( 1,2, , )k m= ⋯  in a 

given time segment 0[ , ]et t  and that the sampling time of 

different telemetry devices may be not completely the same or 

be even hundred-percent different (i.e. 1, ,i n it t≠ ≠⋯ ) and that 

sampling interval of different telemetry device are not 

completely equal (i.e. 1 mn n≠ ≠⋯ ), the problems are 

discussed in two different situations respectively. 

2.1. Conjunction Detection of Synchronous Telemetry Data  

If a spacecraft is provided with m  telemeters which 

synchronously sample telemetry data within a given time 

interval 0[ , ]et t , the m -dimensional measurement data series 

are represented as 

0{ ( ) | [ , ], 1, , } ( 1,2, , )k k i i eS f t t t t i n k m= ∈ = =⋯ ⋯  

In order to analysis the abrupt changes conjunction of the 

telemetry data series, much attention is paid to the cases 

whether these series are beyond threshold or not. Assuming 

that normal range of the k-th dimensional telemetry data of is 

[ , ]k kc c− , the 1/0 type discrete state telemetry representation 

sequence ,( ) { | 1,2, , }k k iI S T i n= = ⋯  can be generated as 

follows: 

( ),

1, ( )

0, ( )

k i k

k i k

k i k

f t c
T S

f t c

 >= 
≤

                         (1) 

Let’s design the Boolean operator ∆  

1 1 0 0 1,1 0 0 1 0∆ = ∆ = ∆ = ∆ =  

and use the operator ∆  on the set ,( ) { | 1,2, , }k k iI S T i n= = ⋯ , 

a new detection function named as Type-I detection index can 

be set up as follows  

( ), ,

1

1
( , ) ( , 1,2, , )

n

I u i v i

i

u v T T u v m
n

ρ
=

= ∆ =∑ ⋯          (2) 

Theorem 1: if the m  telemetry devices fixed in a spacecraft 

sample synchronously sampling, then the Type-I detection 

function ( , )I u vρ  of multi-dimensional time series has 

following properties: 

(a) Symmetrical relation:  

( , ) ( , ) ( , 1,2, , )I Iu v v u u v mρ ρ= = ⋯

 

(b) Normal Bound Inequality 

0 ( , ) 1 ( , 1,2, , )I u v u v mρ≤ ≤ = ⋯

 

(c) Selves Reflexivity: 

( , ) 1 ( 1, 2, , )I v v v mρ = = ⋯

 

Proof: The correctness of the theorem 1 is obvious. The 

detailed proof process is omitted. 

From formulae (2) you can find out that, if the device u  

obtaining data sequence uS  is identical or strong conjunct 

with the device v  obtaining data sequence vS  whether these 

devices are normal or not, then the detection function 

( , ) 1I u vρ = . is realized; and if the device u  are not conjunct 

with the device v , then the detection function ( , ) 0I u vρ =  is 

realized; and if the device u  are partly conjunct with the 

device v , then the detection function satisfies the following 

inequality 0 ( , ) 1I u vρ< < . Statistics ( , )I u vρ  is a good index 

to reflect the data sequence uS  and data sequence vS  are 

synchronous conjunction strength whether it is normal or not. 

2.2. Conjunction Detection of Asynchronous Telemetry Data 

Because sampling times and sampling density of different 

telemetry devices may be different, it is impossible to directly 

compare with two or more than two series of samples. In order 

to judge whether the telemetry data obtained from different 

telemetry device are relevant or not when abnormal changes 

take place. So, it is necessary to process the telemetry data into 

several segments in appropriate way. Relying on these 

segments, it is able to establish the decision algorithm on 

conjunction detection of telemetry data about abnormal 

changes. 

The basic idea stated above is equally to divide the time 

segment 0[ , ]et t  into w  pieces. Counting ,k sn  which is the 

number of telemetry data which locate in the piece 

1[ , )s s sQ t t−=  of 0 0 1 1 2 1[ , ] [ , ) [ , ) [ , ]e w et t t t t t t t−= ∪ ∪⋯  and 

,k sb  the number of telemetry data which are beyond the 
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threshold kc , we have the following formulae:  

, ,

1

, , ,

1

{ | 1,2, , }

{ | ( ) , 1, 2, , }
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       (3) 

where the threshold kc  is a practical discriminant bound. 

Using formulae (1), number of the sampling points in 

multi-dimensional telemetry data series can be counted in 

each sampling times and the index (2) can be modified as 

follows: 

,

, 1
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  (4) 

Thus, a series of new detection statistics are established for 

multidimensional telemetry data series and shown in table 1. 

Table 1. Statistics of Multi-dimensional Time Series Beyond Bounds. 

 [t0, t1) [t1, t2) …… [tk-1, tk] 

S1 1,1n  1,1d  1,2n  1,2d  …… 1,kn  1,kd  

… ... 

Sm ,1mn  ,1md  ,2mn  ,2md  …… ,m kn  ,m kd  

Using the statistical results shown in table 1 and referencing 

the concept of correlation coefficient in statistics, a modified 

formula (5) is constructed to detect sequence correlation of 

multi-dimensional telemetry data when there are abnormal 

changes taking place  

{ }, ,

1

1
( , ) 1 ( , 1, 2, , )

w

II u i v i

i

u v d d u v m
w

ρ
=

= − − =∑ ⋯       (5) 

Formula (5) is called as type II detection function. It is not 

difficult to verify the correlation detection function ( , )II u vρ  

is symmetrical. 

Theorem 2: For m-dimensional time series in time interval 

0[ , ]et t  of telemetry data from spacecraft in space, the type-II 

conjunction detection function determined in formula (5) has 

the following properties: 

(a) Symmetry: ( , ) ( , ) ( , 1,2, , )II IIu v v u u v mρ ρ= = ⋯  

(b) Polarity: 0 ( , ) 1 ( , 1,2, , )II u v u v mρ≤ ≤ = ⋯  

(c) Reflexivity: ( , ) 1 ( 1,2, , )II v v v mρ = = ⋯  

Proof: The correctness of the theorem 2 is obvious. The 

proof process is omitted. 

Comparison type I detection function ( , )I u vρ  with type II 

detection function ( , )II u vρ , the following results can be 

obtained: ( , )I u vρ = ( , )II u vρ  if sampling processes are 

synchronous. So, the type II detection function can be used in 

all kinds of sampling series whether they are synchronous or 

not, but the type I detection function is just only suitable for 

synchronous sampling series. 

3. Changes Conjunction Based Cluster 

Spacecraft telemetry data have the characteristics of variety, 

complex shape, asynchronous sampling, unequal interval as 

well as impurities, losing samples, variable dimensions, 

different physical meaning, and variant amplitude etc. These 

intricate situations are very difficult to deal with the 

conjunction detection. In this section, much attention will be 

paid to set up a new kind of equivalence relationship among 

different telemetry data series in the case that there are 

abnormal changes take place in the processes. 

Assuming that, in the period of time 0[ , ]et t , a spacecraft 

have m  telemetry devices that obtain spacecraft status from 

different sensors and form m telemetry data segment 

, , 0{ ( ) | [ , ], 1, , } ( 1,2, , )k k k i k i e kS f t t t t i n k m= ∈ = =⋯ ⋯  

The type II detection function ( , )II u vρ  can be used to 

cluster different series as follows: 

Step 1: To divide equally the time segment 0[ , ]et t  into w

pieces, namely 

0 0 1 1 2 1[ , ] [ , ) [ , ) [ , ]e w et t t t t t t t−= ∪ ∪⋯  

Step 2: Using formula (3) to count the numbers of telemetry 

data points ,k sn  and ,k sb ;  

Step 3: Calculating the maximum and minimum abnormal 

change percentage: 

,

,

,

,

max | 1,2, ,

min | 1,2, ,

k s
k

k s

k s
k

k s

b
Max s w

n

b
Min s w

n

   = =  
    


   = = 
   

⋯

⋯

                 (6) 

Step 4: To divide the m -dimensional telemetry data 

sequence { | 1,2, , }kS S k m= = ⋯  into three parts: almost no 

abnormal change subset AS , almost entirely abnormal change 

subset BS  and partly abnormal change subset CS :  

{ | 1%, 1,2, , }

{ | 99%, 1,2, , }

A
k k

B
k k

C A B

S S Max k m

S S Min k m

S S S S

 = ≤ =
 = ≥ =
 = − −

⋯

⋯             (7)

 

 

Step 5: In the partly abnormal change subset CS , the 

telemetry data sequence  

1
, , 0{ ( ) | [ , ], 1, , }k k k i k i e kS f t t t t i n= ∈ = ⋯  

is randomly selected and the type II detection function 

1( , )II k vρ  are calculated between subset 1
kS  and subset 
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1{ }C
kS S−  among all sequence vS . Using detection function 

1( , )II k vρ  to split the subset of abnormal change relationship 

1 1
1

ˆ { } { | ( , ) 90%, }C
k k v II vS S S k v S Sρ= ∪ ≥ ∈          (8) 

Step 6: To set 1ˆA B C
kS S S S S− − − ⇒ ; 

Step 7: To repeat step 5 and step 6 until 
C

S = Φ . 

For any m -dimensional telemetry data series, using step 1 

– step 7 stated above, the telemetry series can be divided into 

several sub-sequences that have inherent abnormal change 

correlation as follows: 

1ˆ ˆ p A B
k kS S S S S= + + + +⋯                      (9) 

The number of abnormal change association type is  

( )A Bp m S S≤ − +  

4. Simulation Results Analysis 

In order to verify the validity of the algorithm stated above, 

the Monte Carlo method and two independent standard normal 

random process models are used with contamination. 

( )1 1 1
1 2

2 2 2

( ) ( ) ( )
( ) ~ (0,1), ( ) ~ (0,1)

( ) ( ) ( )

S t s t t
s t N s t N

S t s t t

δ
δ

= +
 = +

  (10) 

Case I 

Setting the pollution components 1( ) ( 1) 6.1k
ktδ = −  and 

1
2 ( ) ( 1) 5.9 ( 15k

kt k iδ −= − =  where i I∈ and 100)k ≤  

separately. Using the Monte Carlo method, two groups of 

abnormal data series with 100 random samples are generated, 

named as 1S  and 2S , and plotted in Fig 1. Obviously, the 

pollution components are different in directions, the 

magnitudes as well as times of the pollution components are 

similar.  

 

Figure 1. Two Series of Conjunctive Data Contaminated by Outliers at the 

Same Times and Opposite Directions. 

Using formula (1), the characterization of sequence 1T  and

2T  are calculated and plotted in Fig 2, which are almost the 

same. 

 

Figure 2. Abnormal Index Series of The Two Series in Fig. 1. 

Using formula (2) to calculate the type I detection function, 

correlation index is 0.99ρ = . This result illustrates that the 

abnormal changes in these two sequences are intrinsic 

relevant. 

Case II 

Setting the pollution components 1( ) ( 1) 6k
ktδ = −

( 7 , ; 100)k i i I k= ∈ ≤  and 1( ) ( 1) 5.9k
ktδ = −  ( 5 ,k i i I= ∈  

and 100)k ≤ , the pollution amplitude is almost the same but 

the pollution times are different, which are plotted in Fig. 3. 

 

Figure 3. Two Series of Non-conjunctive Data Contaminated by Outliers at 

Different Times and the Same Directions. 

Using formula (1) to calculate characterization sequence 1T  

and 2T , which are plotted in Fig. 4.  

 

Figure 4. Abnormal Index Series of The Two Series in Fig. 3. 

Using formula (2) to calculate the type I detection function, 

the correlation index is 0.71ρ = . This result illustrates that 

abnormal change in these two sequences have no relevance. 

5. Conclusions 

To explore the conjunction of multidimensional 

abnormal series from telemetry components (or abnormal 

series contaminated by outliers) is a key and challenging 
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technique problem in process monitoring, in faults analysis, 

and in faults location. In this paper, it is ingeniously solved 

by appropriating two kinds of correlation detection function. 

Based on the correlation detection functions, a large 

number of different processes can be clustered. After 

clustering these series, it is easy to distinguish different 

anomalies in a large-scale complex system, which relies on 

whether the changes cause the same cause or not. It 

provides a feasible technical approach for us to discover 

and to judge causes of faults in the system operation 

processes. Specifically, in section 2, a set of relevance 

detection index are established, which are applicable to 

clear impurity band and to mend the missing telemetry data 

sequence. The multi-dimensional clustering method of 

telemetry data are used and several series of are existed. 

Analysis of the simulation result can be used to verify the 

availability of this method and algorithm. 
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